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Abstract

Unwanted traffic mitigation can be broadly classified
into two main approaches: a) centralized security infras-
tructures that rely on a limited number of trusted moni-
tors to detect and report malicious traffic; and b) highly
distributed systems that leverage the experiences of mul-
tiple nodes within distinct trust domains. The first ap-
proach offers limited threat coverage and slow response
times. The second approach is not widely adopted, partly
due to the lack of guarantees regarding the trustworthi-
ness of nodes that comprise the system.

Our proposal, FaceTrust, aims to achieve the trust-
worthiness of centralized security services and the wide
coverage and responsiveness of large-scale collaborative
threat mitigation. FaceTrust is a large-scale peer-to-peer
system designed to rapidly propagate behavioral reports
concerning Internet entities (e.g., hosts, email signatures
etc.). A FaceTrust node builds trust for its peers by au-
diting their behavioral reports and by leveraging the so-
cial network of FaceTrust administrators. A FaceTrust
node combines the confidence its peers have in their own
reports and the trust it places on its peers to derive the
likelihood that the entity is malicious (e.g. being a spam
bot).

The simulation-based evaluation of our approach indi-
cates its potential under a real-world deployment: during
a simulated spam campaign, FaceTrust nodes character-
ized 71% of spam bot connections as such with confi-
dence greater than75%.

1 Introduction

The majority of the currently deployed Internet threat
mitigation techniques rely on centralized infrastructures
and place trust on a small number of security authorities.
For instance, email systems and browsers rely heavily on
a few centralized IP [7] and web site [4,5] reputation ser-
vices. End-users rely on software vendors to update their
anti-virus/malware tools or to release updates that patch
their systems’ vulnerabilities.

Unfortunately, centralized services are often found to
maintain out-dated blacklists [42] or respond slower than
the worm infection rate [36, 37], offering a rather large
window of opportunity to attackers. Moreover, the van-

tage points of centralized services are limited in num-
bers, but attacks launched using large botnets are becom-
ing increasingly surreptitious. In those attacks, one mali-
cious host may attack multiple domains, each for a short
period of time [27,41], reducing the effectiveness of ma-
licious traffic detection with a small number of vantage
points.

Motivated by this problem, researchers have proposed
collaborative worm containment systems [17, 61] and
peer-to-peer spam filtering platforms [58, 59] to achieve
rapid and reliable detection and suppression of unwanted
traffic. These early systems assume compliant behavior
from all participating peers, which is hardly true given
the heterogeneity of the Internet. Compromised hosts
controlled by attackers may join the system, polluting the
detection mechanisms. In addition, honest peers may be-
come compromised after they join the system.

We propose a collaborative peer-to-peer threat mitiga-
tion system (FaceTrust) that uses social trust embedded
in online social networks (OSN) to defend against ma-
licious peers. Each FaceTrust node disseminatesbehav-
ioral reports, i.e. security alerts regarding Internet enti-
ties, such as IP addresses, packet fingerprints, and email
signatures that it observes to its peers (Section 3). The
goal of the system is to ensure that the behavioral reports
reach the destination nodes faster than the threat itself,
and that they are credible enough to warrant action by
their receivers. Each FaceTrust node associates a trust
score to another FaceTrust node and uses this score to
assess the trustworthiness of the behavioral reports orig-
inated by the other node.

FaceTrust is designed to be a peer-to-peer system com-
prising of nodes across different trust domains. The
large scale of the Internet inhibits a node from directly
assessing the trustworthiness of all participating nodes.
However, in order for the system to be effective in
mitigating numerous, heterogeneous, and fast-spreading
threats, it must enable a FaceTrust node to interact with
a large number of other FaceTrust participants, while be-
ing aware of their trustworthiness.

To address this challenge, FaceTrust uses social trust
to bootstrap direct trust assessments, and then employs a
lightweight reputation system to evaluate the trustworthi-
ness of nodes and their behavioral reports (Section 3.3).
Our insight is that each FaceTrust node will be admin-



istered by human administrators (admins), and nodes
maintained by trusted admins are likely to disseminate
trustworthy reports. Therefore, a FaceTrust node may
obtain a direct trust assessment with a number of nodes
with whom its admin has social relationships. Social re-
lationships between admins can be obtained from mas-
sive Online Social Network (OSN) providers, such as
Facebook and MySpace. FaceTrust then uses a reputa-
tion management system [23,34] to aggregate the nodes’
collective experiences in order to enable one node to
form opinions of another node’s trustworthiness despite
the lack of past history of interactions.

Reputation systems are known to be vulnerable to the
Sybil attack [21]. Sybil attacks subvert distributed sys-
tems by introducing numerous malicious identities un-
der the control of an adversary. Through the use of these
identities the adversary acquires disproportional influ-
ence over the system. To mitigate this attack, FaceTrust
again uses the social network to assess the probability
that a node is a Sybil attacker, i.e. itsidentity trust
(Section 3.2) Each FaceTrust node’s identity is asso-
ciated with its admin’s identity. The latter is verified
through the social network using a SybilLimit-like tech-
nique [55], which is shown to be effective in identifying
sybils among social network users.

Our design enables a FaceTrust node to use both the
identity trust and the reputation of another node to as-
sess the overall trustworthiness of the other node’s be-
havioral report. The originator of a behavioral report it-
self also assigns a confidence level to the report, as traf-
fic classification has a level of uncertainty. The trust-
worthiness of a node and its confidence level in a report
determines whether a node should trust a report or ig-
nore it. Trusted reports can be used for diverse purposes,
depending on the FaceTrust node’s function. For exam-
ple, email servers can use them to automatically filter out
email messages that originate from IPs that have been
designated as spammers with high confidence. IDS sys-
tems can use them to block packets that originate from
suspicious IPs or have signatures that have been desig-
nated as malicious.

We evaluate our design (Section 4) using a100K-node
sample of the Facebook social network. We first evalu-
ate the effectiveness of our SybilLimit-like technique in
mitigating Sybil attackers. Our results show that honest
nodes have∼ 0.89 average identity trust, whereas Sybil
nodes in clusters with more than 200 nodes have less than
0.05 average identity trust. We also show that it is prac-
tical for a typical centralized social network provider to
support the proposed identity trust primitive. In addi-
tion, we demonstrate through simulation that collaborat-
ing FaceTrust nodes are able to suppress common types
of unwanted traffic in a reliable and responsive manner.
Our simulations show that in a100K-node FaceTrust

Figure 1: FaceTrust architecture.

network with only10% of nodes having spam classi-
fication capability, nodes with no local spam detection
capability are able to identify71% of connections from
spammers with greater than75% confidence. In a simi-
lar setting, where only10% of the nodes are able to clas-
sify worms, behavioral reports that carry worm signa-
tures are disseminated faster than the rate at which the
worm spreads.

2 System Overview

In this section, we provide a high-level description of our
system and the security challenges it addresses.

2.1 FaceTrust Components

Figure 1 depicts FaceTrust’s architecture. At a high-
level, the FaceTrust system comprises the following
components: 1) human users that administer networked
devices/networks (admins) and join a social network;
2) end systems that are administered by specific admins
and participate in monitoring and reporting the behavior
of entities (FaceTrust nodes); 3) behavioral reports sub-
mitted by FaceTrust nodes concerning entities they ob-
serve; 4) direct trust updates made available by FaceTrust
nodes reporting their perceived trustworthiness of their
peers; and 5) a distributed repository that receives and
stores behavioral reports and trust updates.

The same administrator that administers a FaceTrust
node also administers a group of applications that in-
terface with the node. These applications may be
equipped with Internet traffic monitoring and character-
ization functionality, i.e., they are able to detect email
spam, port scanning traffic, DoS activity etc. Exam-
ples of applications with such monitoring and charac-



terization functionality are honeypots [47,51], backscat-
ter/darknet traffic detection infrastructure [13, 47] and
worm detection and containment systems [19, 45, 50].
They may also be applications that utilize concrete de-
scriptions of unwanted traffic to filter it out, such as email
filters or IDS systems.

2.2 Behavioral Reports

A traffic characterization application uses the
Report(entityID, action, confidence) call
of the FaceTrust node RPC API to feedback its observed
behavior of an entity. The first argument identifies
the source of the threat (e.g. an IP address, a packet
fingerprint etc.) The second argument determines the
type of security threat the report concerns (e.g. “is a
worm”, “is a spam bot” etc), and the third argument is
the confidence with which the application is reporting
that the specified entity is performing the specified ac-
tion. The latter takes values in0% to 100% and reflects
the fact that in many occasions traffic classification has
a level of uncertainty. For example, a mail server that
sends both spam and legitimate email may or may not
be a spamming host.

In turn, the FaceTrust node submits a corresponding
behavioral report to the repository to share its experience
with its peers. For example, if a nodei’s spam analysis
indicates that half of the emails received from host with
IP I are spam,i reports:

[behavioral report] I, is spam bot, 50%

In addition, FaceTrust nodes are able to revoke behav-
ioral reports by updating them. If for example at a
later time, i determines that no spam originates from
I, it sends a new behavioral report in which it updates
the confidence value from50% to 0%. Each report
is signed by the reporting FaceTrust node’s public key
(Section 3.1) for authentication and integrity.

2.3 Trusting an Entity

Each FaceTrust node assigns apeer trustvalue to each of
its peers in the network. This trust value determines the
trustworthiness of the peer’s behavioral reports. Thepeer
trust is determined using two dimensions of trust: a)re-
porter trust; and b)identity trust. We describe these two
dimensions below. The receiver of a behavioral report
derives its confidence in the correctness of the received
report from the behavioral report’s confidence and the
peer trust.

FaceTrust nodes collectively computereporter trust
values by employing a reputation management mecha-
nism. This mechanism relies on FaceTrust nodes veri-
fying each other’s behavioral reports to derive individual

direct trustvalues (Section 3.3). If a nodei is able to
verify the behavioral reports of nodej it can determine
a direct trust valuedij . The FaceTrust nodes share these
values with other FaceTrust nodes by exchangingdirect
trust updates. For reasons of scalability and efficiency,
a node considers the behavioral reports of only a (possi-
bly random) subsetV (including itself) of all the nodes
in the FaceTrust network. Consequently, nodes submit
and retrieve direct trust updates only for nodes inV . We
refer toV as a node’sview.

FaceTrust also relies on the fact that nodes comprising
Internet systems such as email servers, honeypots, IDS
etc are administered by human admins. These human
users maintain accounts in online social networks (OSN).
FaceTrust leverages OSNs in the following two ways: a)
it defends against Sybil attacks [21] by exploiting the fact
that OSNs can be used for resource testing, where the test
in question is a Sybil attacker’s ability to create and sus-
tain acquaintances. Depending on the result of the test,
the OSN provider assigns anidentity trustvalue to the
admin; and b) It initializes thedirect trustvalues in the
absence of prior interactions between FaceTrust nodes,
by considering the trust that is inferred by associations
in the social network of administrators.

Finally, an application can use the
GetTrust(entityID, action) call of the FaceTrust
node RPC API to obtain a trust metric that corresponds
to the likelihood of an entityID performing the specified
malicious action. The FaceTrust node derives this metric
by aggregating behavioral reports regarding entityID.
These behavioral reports are weighted by the reporting
node’speer trust.

2.4 Security Challenges

FaceTrust is a collaborative platform aiming at suppress-
ing malicious traffic. As such, it is reasonable to assume
that FaceTrust itself will be targeted in attempts to dis-
rupt its operation. FaceTrust is an open system, mean-
ing that any admin with a social network account and a
device can join. Due to its highly distributed and open
nature, it faces the following challenges:
False Behavioral Reports.Malicious FaceTrust nodes
may issue false or forged reports aiming at reducing the
system’s ability to detect unwanted traffic or disrupting
legitimate Internet traffic.
Behavioral Report Suppression or Alteration.We im-
plement the distributed repository for behavioral reports
as a Distributed Hash Table (Section 3.5). Consequently,
the system is vulnerable to attacks on DHT routing [18]
aiming at preventing legitimate nodes from retrieving im-
portant behavioral reports. In addition, since the reports
may be stored by malicious nodes such nodes may at-
tempt to alter their content.



False Direct Trust Updates.To address false behavioral
reports, FaceTrust employs a reporter reputation system
to determine the amount of trust that should be placed
on each user’s reports. However, the reputation system
itself is vulnerable to false reporting as malicious nodes
may send false or forged direct trust updates.
Sybil Attack. An adversary may attempt to create mul-
tiple FaceTrust identities aiming at increasing its abil-
ity to subvert the system using false behavioral reports
and direct trust updates. Defending against Sybil attacks
without a trusted central authority is hard. Many decen-
tralized systems try to cope with Sybil attacks by bind-
ing an identity to an IP address. However, malicious
users can readily harvest IP addresses through BGP hi-
jacking [41] or by commanding a large botnet.

3 FaceTrust Design

In this section we describe the design of our system.

3.1 OSN Providers as Certification Au-
thorities

For an open system such as FaceTrust to operate reliably,
node accountability in the form of node authentication
and prevention of Sybil attacks is of the utmost impor-
tance.

Existing certification authorities are not suitable for
open, large scale P2P architectures because they require
users to pay a certification fee (∼$20 for class 1 certifi-
cate). In addition to CAs being expensive, they currently
represent a monopoly for a very important Internet prim-
itive, and we consider breaking this monopoly beneficial.

We propose to leverage existing OSN repositories
as inexpensive, Sybil-mitigating certification authorities.
OSNs are ideally positioned to perform such function be-
cause using SybilLimit-like techniques (see Section 3.2)
they can determine the amount of confidence one can
place on a node’s identity. We refer to this confidence
as identity trust. They are able to perform inexpensive
resource tests by analyzing the centrally maintained so-
cial graph.

Each node that participates in FaceTrust is adminis-
tered by human users that have accounts with Online
Social Network providers. The system needs to ensure
that each user’s social network identity is closely cou-
pled with its FaceTrust node. To this end, FaceTrust uses
an OSN application as a front-end to the social network
that the human user has joined.

Every FaceTrust admin obtains a public/private key
pair that is associated with its social network identity.
It obtains its public key in the form of a public key cer-
tificate that is signed by the trusted OSN provider (e.g.

signed with Facebook’s public key). This certification
mechanism closely resembles a typical X.509 PKI infras-
tructure, in which the hierarchy of certificates is always
a top-down tree, with a root certificate at the top, repre-
senting a CA that is so central to the scheme that it does
not need to be authenticated by some trusted third party.

The certifying OSN provider can either be the provider
of existing popular OSN (e.g. Facebook) or a third-
party OSN application (e.g. Facebook application [3])
provider. In the first case, the popular OSN provider has
access to the complete social network, and augments the
OSN application API to allow applications to query the
identity trust of the OSN’s users. OSN providers are
incented to provide this service because it adds value
to their service, making the service more attractive to
subscribers. In the second case, a third-party deploys
FaceTrust as an OSN application and has access only to
the social network of users using FaceTrust. Although
the FaceTrust-only social network is not as complete as
the OSN provider’s one, the fact that it is smaller makes
its analysis less computationally expensive. In addition,
it does not require the adoption of the service by the OSN
provider. For ease of exposition, for the rest of the paper
we refer to both the popular OSN provider and the third-
party OSN application provider asOSN provider.

To defend against forged or falsifiedbehavioral reports
and direct trust updates, FaceTrust nodes sign messages
that originate from them using their private key. When
a nodei exchanges direct trust updates with a nodej, or
receives behavioral reports that are claimed to originate
from j, i acts as follows. Ifi does not havej in its view,
it obtainsj’s public key certificate fromj and verifies
it using the OSN provider’s certificate. After verifying
j’s public key,i verifies the signed direct trust update or
behavioral report that is claimed to originate fromj.

3.2 Determining the Identity Trust

There is typically one-to-one correspondence between
a real user’s social network identity and its real iden-
tity. Although, malicious users can create many iden-
tities, they can establish only a limited number of trust
relationships with real humans. Thus, groups of Sybil
attackers are connected to the rest of the social graph
with a disproportionally small number of edges. The
first works to exploit this property was SybilGuard and
SybilLimit [55, 56], which bound the number of Sybil
identities using a fully distributed protocol.

Based on a similar concept, FaceTrust’s Sybil detec-
tion algorithm determines the strength of a FaceTrust
user’s identity. This algorithm is executed solely by the
OSN provider over its centrally maintained social graph
I. An admin’s i identity is considered weak if it has
not established a sufficient number of real relationship’s



over the social network. Upon being queried by an admin
v, the OSN provider returns a value in[0.0, 1.0], which
specifies the confidence of the provider that a specific
nodes is not participating in a Sybil attack, i.e. the prob-
ability thats is not part of a network of Sybils.

First, we provide some informal background on the
theoretical justification of SybilGuard and SybilLimit. It
is known that randomly-grown topologies such as so-
cial networks and the web are fast mixing small-world
topologies [11, 25, 53]. Thus in the social graphI with
n nodes, a walk ofΘ(

√
n log n) steps containsΘ(

√
n)

independent samples approximately drawn from the sta-
tionary distribution. When we draw random walks from
a verifier nodev and the suspects, if these walks remain
in a region of the network that honest nodes reside, both
walks drawΘ(

√
n) independent samples from roughly

the same distribution. It follows from the generalized
Birthday Paradox [56] that they intersect with high prob-
ability. The opposite holds if the suspect resides in a
region of Sybil attackers that is not well-connected to the
region of honest nodes.

SybilGuard replaces random walks with “random
routes” and a verifier node accepts the suspect if random
routes originating from both nodes intersect. In random
routes, each node uses a pre-computed random permu-
tation as a one-to-one mapping from incoming edges to
outgoing edges. We refer to this random permutation as
routing table. As a result, two random routes entering an
honest node along the same edge will always exit along
the same edge (“convergence property”). This property
guarantees that random routes from a Sybil region that is
connected to the honest region through a single edge will
traverse only one distinct path, further reducing the prob-
ability that a Sybil’s random routes will intersect with
a verifier’s random routes. SybilLimit [55] is a near-
optimal improvement over the SybilGuard algorithm. In
SybilLimit, a node accepts another node only if random
routes originating from both nodes intersect at their last
edge. For two honest nodes to have at least one inter-
sected last edge with high probability, the required num-
ber of the random routes from each node should be ap-
proximatelyr = Θ(

√
m), wherem is the number of

edges inI. The length of the random routes should be
w = O(log n).

With FaceTrust’s SybilLimit-like technique the OSN
provider computes an identity trust score for each node
s in the social graphI. At initialization time, the OSN
provider selectsl random verifier nodes. It also creates
2r independent instances of pre-computed random per-
mutation as a one-to-one mapping from incoming edges
to outgoing edges (routing table). The firstr routing ta-
bles are used to draw random routes from suspect nodes
s and the restr routing tables are used to draw random
routes from the verifier nodesv. SybilLimit uses dis-

tinct routing tables for verifiers and suspects in order to
avoid undesirable correlation between the verifiers’ ran-
dom routes and the suspects’ random routes. For eachs,
the OSN provider runs the SybilLimit-like algorithm is
as follows:

1. For each of thel verifiersv, it picks a random neigh-
bor of v. It draws along the random neighborsr
random routes of lengthw = O(log n), for each in-
stance of ther routing tables, wheren is the number
of nodes inI. It stores the last edge (tail) of each
verifier random route.

2. It picks a random neighbor ofs and draws along it
r random routes of lengthw = O(log n), for each
instance of the nodes’ routing tables. It stores the
last edge (tail) of each suspect random route. We
refer to steps(1) and(2) of the algorithm asrandom
routing.

3. For each verifierv, if one tail froms intersects one
tail from v, that verifierv is considered to “accept”
s. We refer to this step asverification.

4. It computes the ratio of the number of verifiers that
accepts over the total number of verifiersl. That
ratio is the computed identity trust scoreids.

Nodes query the OSN provider for the identity trust
of their peers. The OSN provider performs the above
computations periodically and off-line to accommodate
for topology changes. The OSN provider stores the result
of this computation for each node as a separate attribute.

3.3 Determining the Reporter Trust

Malicious nodes may issue false behavioral reports to
manipulate the trust towards entities. In addition, mis-
configured nodes may also issue erroneous reports.
FaceTrust can mitigate the negative impact of incorrect
behavioral reports by assigning higher weights to reports
obtained from more trustworthy FaceTrust nodes. Con-
ceptually, each FaceTrust nodei maintains a reporter
trust valuertij to every other FaceTrust nodej in its
view, j ∈ Vi. This trust score corresponds to nodei’s
estimation of the probability that nodej’s reports are ac-
curate. It is obtained from three sources: trust attainable
from online social networks, direct behavioral report ver-
ification, and transitive trust.

First, FaceTrust relies on the fact that FaceTrust nodes
are administered by human users. Competent and benign
users are likely to maintain their nodes secure, and pro-
vide honest and truthful reports. The trust on the compe-
tency and honesty of human users could be obtained via
social networks. FaceTrust admins maintain accounts in



online social networks. An admini tags her acquain-
tance adminj with a social trust scorestij in [0.0, 1.0]
based on her belief onj’s ability to manage her FaceTrust
node(s). This value is used to initialize a direct trust score
between two FaceTrust nodesi andj: dij = stij .

Second, a FaceTrust nodei dynamically updates the
direct trustdij by comparing behavioral reports submit-
ted by the nodej with its own reports. A nodei may
verify a report from a nodej for an entitye, if i has
also generated a recent report with respect to the same
entity. i may also probabilistically choose to observe
e solely for the purpose of verifying reports of another
nodej. The portion of the received behavioral reports
that the FaceTrust nodes verify is a tunable parameter.
Intuitively, if i andj share similar opinions one, i should
have a high trust inj’s reports. Letvk

ij be a measure of
similarity in [0, 1.0] betweeni andj’s kth report. A node
i may updates its direct trust toj using an exponential
moving average:

dk+1

ij = α ∗ dk
ij + (1 − α) ∗ vk+1

ij (1)

As i verifies a large number of reports fromj, the di-
rect trust metricdk

ij gradually converges to the similarity
of reports fromi andj.

By updatingdij and making it available for retrieval
to other nodes,i enables its peersj ∈ Vi to build their
FaceTrust reporter trust graphTj(Vj , Ej). The reporter
trust graph of a nodei consists of only the nodes in its
viewVi, and its directed edge setEi consists of the direct
trustduv for eachu, v ∈ Vi. If a nodeu has not released
a direct trust update for a nodev, duv is treated as being
equal to0.0.

Third, a FaceTrust nodei incorporates direct trust and
transitive trust to obtaini’s overall trust toj: rtij . Due
to the large number of FaceTrust nodes, the admin of a
FaceTrust nodei may not tag a social trustsij to the
admin of a nodej. Moreover, due to the variety and
large number of observed entities, nodesi andj may not
have encountered the same entities and are therefore un-
able to directly verify each other’s reports. Furthermore,
i can further improve the accuracy of its trust metric
for j by learning the opinions of other FaceTrust nodes
aboutj. The overall reporter trustrtij can be obtained as
the maximum trust path in nodei’s reporter trust graph
Ti(Vi, Ei), in which each edgeu → v is annotated by
the direct trustduv. That is, for each pathp ∈ P , where
P is the set of all paths between nodesi andj:

rtij = maxp∈P (Πu→v∈pduv) (2)

We use the maximum trust path because it can be effi-
ciently computed with Dijkstra’s shortest path algorithm
in O(|E| log |V |) time for a sparseT . In addition, it
yields larger trust values than the minimum or average

trust path, resulting in faster convergence to high confi-
dence regarding the actions entities perform. Last, it mit-
igates the effect of misbehaving nodes under-reporting
their trust towards honest nodes.

If Ti is very sparse (e.g.|Ei| being smaller or slightly
larger than|Vi|), a nodei may not be able to derive
meaningful trust values for its peers inVi using the re-
port trust graphTi(Vi, Ei). To remedy this situation,Vi

includes the nodes with whichi is socially acquainted
and has assigned social trust values to. In addition, the
node augmentsTi with directed edges from itself towards
a pre-trusted setN of reliable nodes. The size of the
pre-trusted and is almost the same for all nodes in the
FaceTrust network. Nodes become aware of those reli-
able nodes either via word of mouth over the social net-
work or by querying the OSN provider. Nodes do not
send direct trust updates for these pre-trusted nodes.

3.4 Determining the Trust for an Entity

As mentioned above, a FaceTrust nodei may receive
multiple behavioral reports originating from multiple
nodesj ∈ V and concerning the same entitye for the
same actiona. Each report is marked with a level of con-
fidencecj of the reporterj. Thus,i needs to aggregate
the behavioral reports to determine an overall confidence
GetTrust(e,a) thate will perform the actiona.

When an admini receives multiple reports concern-
ing the same entity and action pair(e, a), it derives the
overall trustGetTrust(e,a) weighing the behavioral
reports’ confidence by the peer trust of their reporters.

GetT rust(e, a) =
Σj∈Vi

rtij idj cj(e, a)

Σj∈Vi
rtij idj

(3)

3.5 FaceTrust Repository

A node can exchange behavioral reports and direct trust
updates with any other node in the FaceTrust network re-
gardless of whether the admins of the nodes are acquain-
tances in the social network. With this design choice,
we ensure that behavioral reports and direct trust updates
reach the interested nodes on time, improving the threat
coverage of our system. We also enable users that are not
well-connected in the social network to peer with other
trustworthy nodes.

Under typical deployment scenarios and for varying
types of unwanted traffic, nodes often exchange behav-
ioral reports about many malicious entities. The fre-
quency with which behavioral reports and trust updates
are submitted and retrieved would impose a significant
scalability challenge to a centralized FaceTrust reposi-
tory. Therefore, although we maintain the FaceTrust so-
cial network in a centralized manner, we design a dis-



Figure 2:Example of the operation of a small FaceTrust network.

tributed repository to which nodes submit to and retrieve
from behavioral reports and direct trust updates.

Our distributed repository consists of two portions,
one for behavioral reports and one for direct trust up-
dates. The portion of the repository tasked with main-
taining behavioral reports is implemented as a a Dis-
tributed Hash Table, e.g Chord [48]. Nodes form a DHT
to store and retrieve behavioral reports updates concern-
ing nodes in their view. When a node queries for Be-
havioral reports it is interested on the reports for a sin-
gle entity/action pair. These reports are sent by multiple
nodes, thus for efficiency it is reasonable to index(key)
them based on the hash of the concatenation of the en-
tity’s ID (e.g IP) and the action description. When a
FaceTrust nodei encounters a specific entity, it queries
the DHT for all the behavioral reports that involve the
entity and the action. Once it locates the node that stores
those behavioral reports it asks the node for those reports
that originate from nodes inVi.

On the other hand a node needs to retrieve all the direct
trust updates involving all the nodes in its view. Thus it
is reasonable to index the updates by the node that issues
it and store them at the issuing node. A nodei needs to
explicitly query for the existence of an update involving
all node pairs in its view. Thus every time intervalD, a
nodei directly requests from each nodej ∈ Vi to reply
with its current non-zero direct trust valuesdjv towards
other nodes in the network. If the difference between the
current direct trust metricdjv and the lastdjv i retrieved
from j is greater thanǫ, j includes this update in his reply
to i’s request for direct trust updates. The constantǫ is

used to ensure that the nodes do not incur the overhead of
communicating the update if it is not sufficiently large.

Employing a DHT in an adversarial environment
poses several security challenges [18, 46]. One of these
challenges is the “secure node ID assignment”, which is
addressed in our system by the randomized generation of
public/key pairs. This results in nodes not being able to
decide what their Chord identifier is. The Sybil attack is
addressed through the use of our OSN Certification Au-
thorities; nodes with very low identity trust are barred
from participating in the DHT. Nodes with high identity
trust exclude nodes with low one from their finger tables,
e.g. nodes with identity trust below 0.1 cannot join the
ring.

Chord’s inherently constraint routing table and secure
node ID assignment ensures secure routing table main-
tenance [18]. This means that each constrained rout-
ing table (and neighbor set) has an average fraction of
only f random entries that point to nodes controlled by
the attacker, wheref is the fraction of compromised
nodes. To further counter attacks on DHT routing we
employ a form of redundant routing [18]. We use multi-
ple DHT map functions (e.g. multiple Chord rings using
distinct hash function seeds). A node stores behavioral
reports that correspond to its ID under all map functions.
It also maintains a distinct forwarding(finger) table for
each map function. This technique defeats behavioral
report suppression attacks (Section 2.4) through redun-
dancy. The attacker is unlikely to control all the nodes
that store the behavioral reports or at least one node in
the forwarding path for all rings.



A nodei can retrieve the random subset of nodes in
its viewVi either from the OSN provider which may act
as a tracker of online FaceTrust nodes, or by exchanging
contact lists with other nodes.

3.6 FaceTrust Operation Example

Figure 2 depicts an example of the operation of a small
FaceTrust network. The network includes a node tasked
with checking incoming packets for malicious code,
FaceTrust node 3. That node has no inherent packet
classification functionality, thus it relies on the other
two nodes, 1 and 2, for early warning about malicious
traffic coming his way. Node 1 is an EarlyBird [45]
network-layer worm detector, which in this example is
able to identify and generate the fingerprint (sl) of ob-
served Slammer worm packets and report that this finger-
print is worm (wm) with confidencec1(sl, wm) = 50%.
Node 2 is a Vigilante [19] end-to-end worm detector,
which is able to run the malicious code within a sandbox
and analyze it. Thereby, node 2 reports with confidence
c1(sl, is wm) = 100% confidence that the fingerprint of
the slammer packet is a worm.

Node 3 maintains the depicted reporter trust graph, de-
rived from his5-node view. This view includes nodes 1
and 2, which send the depicted behavioral reports. It also
includes nodes 4 and 5, which do not send any reports in
this example. The weighted directed edges in the graph
correspond to the direct trust between the peers in node
3’s view. From the reporter trust graph and Equation 2,
the maximum trust path between nodes 3 and 1 traverses
nodes 5 and 1 yieldingrt31 = 0.4. The maximum trust
path between 3 and 2 traverses nodes 5, 4 and 2 and
yields reporter trustrt32 =∼ 0.65. The identity trust of
nodes 1 and 2 has been computed by the OSN provider
to beid1 = 0.9 andid2 = 0.8, respectively. We can now
use Equation 3 to compute the trustGetT rust(sl, wm)
that the IDS beside node 1 places on FaceTrust to cor-
rectly identify the slammer packet as worm:

c1(sl, wm)rt31id1 + c2(sl, wm)rt32id2

rt31id1 + rt32id2

= 0.82

4 Evaluation

In this section we evaluate FaceTrust’s ability to mitigate
unwanted traffic under varying threat scenarios. First,
we evaluate our identity trust mechanism in terms of its
ability to mitigate Sybil attacks and its computational
cost. Second, we simulate the operation of a FaceTrust
P2P network that aims at proactively identifying spam
sources. Third we proceed with simulating the opera-
tion of a FaceTrust P2P network charged with the task
of identifying a containing the Slammer worm. Last

we demonstrate the significance of FaceTrust admins ap-
propriately setting the social trust towards their acquain-
tances for rapid convergence of the system to correct trust
values for reporters and entities.

4.1 Sybil-Resistance Evaluation

We experimentally evaluate our identity trust metric. We
crawled Facebook [2] to gain an initial insight on how
effective SybilLimits is in detecting Sybil attacks in so-
cial networks that are likely to resemble the network of
FaceTrust admins. Unlike other online social networking
sites, Facebook may more closely resemble the network
of trust between FaceTrust admins: users do not tend to
establish an excessive number of friend relationships and
identities are stronger: a) initially it was open only to
college and high school students with verifiable emails;
and b) its EULA states clearly that they consider creating
fake identities as violation of their terms of use.

Our crawled Facebook graph consists of more than
51 million nodes, and we scaled it down to a100K-
node single connected component graph using the “forest
fire” [29] sampling technique. The average hop count of
this graph is 6.11 and the diameter of the graph is 19.
The number of total undirected edges is 930680 and the
average degree of node is 18. We assume that the current
Facebook graph does not include a substantial number of
Sybils, therefore we consider those 100K nodes to repre-
sent the honest region of the social graph.

4.1.1 Identity Trust Evaluation
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Figure 3:Average identity trust of all Sybil nodes as a function of the
number of nodes in the Sybil cluster with one attack edge. In contrast,
the average identity trust of honest nodes nodes is∼ 0.89.

We now evaluate the effectiveness of FaceTrust’s
SybilLimit-like technique in assigning low identity trust
values to Sybil nodes. In our evaluation, Sybil attack-
ers form a single well-connected cluster. This cluster has
a random graph topology under which Sybil nodes have
average degree14. The Sybil cluster is connected to the
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Figure 4: Average identity trust score of all Sybil nodes as a func-
tion of the number of attack edges in the Sybil cluster with 1000 Sybil
nodes.In contrast, the average identity trust of honest nodes nodes is
∼ 0.89.

honest region throughattack edgesbetween a Sybil node
and an honest node. We vary the number of nodes in the
Sybil cluster from 100 up to 1500, as well as the number
of attack edges from 1 up to 300. We set the lengthw of
random routes equal to17, the number of routing tables
r at each node equals2600 and the number of verifiers
l equal to100. With these settings, the average identity
trust of 1000 randomly chosen honest nodes is0.89 with
0.10 standard deviation.

In Figure 3, we observe that as the number of nodes
in a Sybil cluster increases, the average identity trust of
Sybil nodes decreases and stabilizes at around0.01. The
reason is that as the Sybil cluster increases in size, the
probability that random routes from Sybil nodes cross
attack edges decreases. Figure 4 shows that when the
number of attack edges increases, the average identity
trust of Sybil nodes in the cluster increases logarithmi-
cally. The reason is that the probability that random
routes from Sybil nodes and honest nodes cross attack
edges increases.

The above results demonstrate that the SybilLimit-
like technique assigns much lower identity trust to Sybil
nodes than to honest nodes, when the number of attack
edges is not too high. The low identity trust for Sybil
nodes renders substantially less effective Sybil attacks in
which the misbehaving nodes are not well-connected to
the social graph.

4.1.2 Cost of Identity Trust Computation

The identity trust of nodes is computed centrally by the
OSN provider, and it is critical for the scalability of
the system that the cost of this computation is not pro-
hibitively expensive. Table 1 shows the required compu-
tation time to derive the identity trust for each node in
our 100K-node sample of the Facebook social network.
We profile the identity trust computation implemented
in C++ on a Intel Pentium D, 3.40GHz CPU, 2048KB

Creating one permutation table 0.815699
Random Routing from an honest suspect0.049568
Random Routing from a Sybil suspect 0.027517
Random Routing froml verifiers 5.199869
Verification for an honest suspect 0.093293
Verification for a Sybil suspect 0.237826

Table 1:Times (sec) for computing the identity trust of a suspect in
a 100K node social network with the SybilLimit-like technique.

cache and 2GB RAM machine, running Linux 2.6.25-2-
68. The identity trust computation consists of three parts,
all of which are performed off-line: a) the cost of creat-
ing the routing tables at each node; b) the cost of drawing
random routes from the suspect and the verifiers (random
routing); c) the cost of determining intersections between
the verifiers’ and the suspects’ tails(verification).

The cost of creating one permutation table increases
linearly with the number of nodes, because the system
needs to explore all nodes generating permutation tables.
The number of permutation tables for the SybilLimit-
like technique isr which should beΘ(

√
m), wherem is

the number of edges in the social graph. Consequently,
the total cost of creating all permutation tables for the
SybilLimit-like technique isΘ(n ∗ √

m). Because of
the linear increase in computation time, we need to pre-
compute all required permutation tables for the target so-
cial network. If we assume that the size of the target so-
cial network is 40 million with average node degree20,
r has to be approximately 55KB and 8.8MB storage per
node is required. Generally, the social network updates
slowly, thus this type of precomputation is practical.

The number of traversed edges during random routing
from a node isΘ(w ∗ r) and its cost isΘ(log(n) ∗√m),
wheren is the number of nodes in the social graph. In
terms of scalability, as the size of social network in-
creases toR ∗ n from n, this cost increasesΘ(log(R ∗
n)/log(n) ∗

√
R) times. With a 40-million-node so-

cial network, the random routing from an honest sus-
pect takes approximately 1.4 seconds. We can also pre-
compute the random routing and store2r tails, r for a
suspect and anotherr for a verifier. The precomputation
of random routing for a 40-million-node social network
needs 440KB storage per node.

The verification comparesr tails of a suspect withr
tails of l verifiers and its cost in our implementation is
Θ(l ∗ log(

√
m) ∗ √

m). Similar to random routing, the
cost of the verification increasesΘ(log(r∗

√
R)/log(r)∗√

R) times, when the size of the social network increases
R times. With a 40-million-node social network the cost
of the verification for an honest node and a Sybil node
would be approximately 2.6 seconds and 6.6 seconds, re-
spectively. In the case of an honest node, there are many
possible intersections and a verifier can find one of them



relatively promptly. But a Sybil node has very few inter-
sections and the system typically exhausts all tails with-
out finding any.

Since the computation of identity trust is performed
off-line and consists of simple computing jobs, its cost
can be greatly reduced by standard parallel computing
techniques. From the above, we conclude that OSN
providers that have the computational and hosting ca-
pability to host million of users are also capable of ef-
ficiently performing this computation using their highly
scalable infrastructure.

4.2 Reporter Trust Evaluation

We now evaluate FaceTrust’s effectiveness in managing
the trustworthiness of reporters and their behavioral re-
ports.

We use the SimPy 1.9.1 [38] simulation package to
simulate FaceTrust’s operation under spam email and
worm attack scenarios. We simulate all the protocol op-
erations described in Section 3 as well as an iterative
Chord DHT with 3 rings for redundancy. We do not sim-
ulate any physical, network or transport layer events (e.g.
congestion and packet loss). We repeat each simulation
3 times and we average results over the repetitions.

Nodes verify each other’s behavioral reports and up-
date their direct trust using the exponential moving av-
erage (Equation 1). We compute the similarity between
reports in this evaluation as follows. Nodei receives the
kth behavioral report from nodej that involves an en-
tity action pair(e, a) that both nodes have observed and
to which nodei andj have assigned confidenceci(e, a)
andcj(e, a) respectively. Nodei computes the similarity
vk

ij with nodej as follows:

vk
ij =

min(ci(e, a), cj(e, a))

max(ci(e, a), cj(e, a))
(4)

E.g. if nodei has sent a behavioral report concern-
ing a packet signature being a worm with50% confi-
dence and nodej has sent a behavioral report concerning
the same signature being a worm with60% confidence,
vij = 50/60.

We evaluate our technique for varying view sizes|V |.
The view of a node is a subset of the 100K-node sam-
pled Facebook network described in Section 4.1. A node
sets its direct trust towards nodes with which it is con-
nected in the sampled Facebook network equal to a ran-
dom value in[0.0, 1.0]. In addition, the size of the pre-
trusted set|N | (Section 3.3) is set equal to20 and the so-
cial trust assigned to the pre-trusted nodes is equal to0.9.
The view of a node consists of its social acquaintances,
the pre-trusted set and a random subset of the sampled
network.

4.2.1 Spamming Bots Simulation
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the absence of misbehaving FaceTrust nodes as a function of|V |. Con-
nections for which a node is50% or 75% confident that are spam are
considered detected.
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presence of misbehaving FaceTrust nodes as a function of|V |. Con-
nections for which a node is50% or 75% confident that are spam are
considered detected.

With this evaluation, we demonstrate FaceTrust’s abil-
ity to suppress one of the most prevalent types of Internet
unwanted traffic: spam email. We simulate the behavior
of a spamming botnet as it spams100K nodes (email
servers) that belong in a FaceTrust network. The goal of
the simulated FaceTrust network is to promptly identify
spamming IPs and reject connections from them.10K
nodes in the FaceTrust network have the ability to char-
acterize spam upon receiving it, e.g. by subscribing to
a commercial email reputation service such as TrendMi-
cro [8]. We refer to these10K nodes ashonest nodes.
We refer to the rest90K nodes asregular nodes. Regular
nodes cannot detect spam and cannot verify the behav-
ioral reports of other nodes. They rely on honest nodes
to warn them about spamming bots.

We draw the simulated spamming botnet behavior par-
tially from [41] and [54]. 1000 spamming bots send
uniformly to all IP addresses over the course of1200
sec. All spamming bots start to send emails at ran-
dom instances within the first10 minutes of the simu-
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Figure 7:The number of spam connections per second that are char-
acterized as such (true positives) as a function of time, in the presence
of misbehaving FaceTrust nodes. We also depict the total number of
spam connections. Connections for which a node is50% or 75% con-
fident that are spam are considered detected.

lation, since spam campaigns are found to be clustered
in time [42]. Spamming bots establish 3 connections per
second [54]. The parameterα of Equation 1 is set equal
to 0.4. The parameterǫ (Section 3.3) is set equal to0.2.
The size of the pre-trusted set is equal to20. Lastly,
FaceTrust nodes retrieve direct trust updates regarding
nodes in their view everyD = 20 secs. (Section 3.5).

750 of the spamming bots connect to randomly se-
lected nodes for120 sec. We call these spammers
ephemeral.The rest of the bots persist for until the end of
the simulation, and we refer to them as persistent. Spam-
mers never attempt to connect to an already visited node.

A node that receives an SMTP connection issues a
GetTrust() call, which entails the retrieval of rele-
vant behavioral reports submitted by nodes in its view,
and computing the trustworthiness of those nodes (Sec-
tions 3.3, 3.4). Honest nodes update the direct trust of
their peers as soon as they verify their behavioral reports
(Equation 1). They issue aReport() call to submit a be-
havioral report about a spamming host with100% confi-
dence as soon as they receive an SMTP connection from
that host. Nodes use the maximum trust path to deter-
mine their transitive trust with other nodes in their view
(Equation 2).

Figure 5 reports the percentage of spam connections
that are perceived as such by the regular FaceTrust nodes
throughout the duration of the spam campaign. It is pre-
sented as a function of the FaceTrust nodes’ view sizeV .
A spamming connection is considered detected if the reg-
ular node that receives it considers the requesting node a
spam bot with greater than50 or 75% confidence.

In our simulation, on average a node is spammed by
approximately12 distinct spam hosts. We observe that
for view size|V | = 1k, the network is able to reject71%
of the spam connections if nodes reject connections from
nodes that are perceived as spam bots with75% confi-
dence. The speed with which confidence regarding spam

bots propagates through the network depends on the size
of the view: the more nodes a nodei has in its view,
the larger is the probability that a node that has detected
and reported a spam bot earlier is includedi’s view. On
average for|V | = 1K, at the end of the simulation a
FaceTrust node has0.81 trust towards honest nodes.

We also observe that for small-sized views, e.g.|V | =
100, the system is ineffective in rejecting spam because
the probability that another node in the view has encoun-
tered the same threat (spamming bot) and is able to offer
an early warning is substantially reduced. This obser-
vation motivates our design choice not to limit a node’s
view to comprise only its social acquaintances.

In Figure 6, spamming bots are also misbehaving
FaceTrust nodes, which claim1.0 direct trust for mis-
behaving nodes in their view. Misbehaving FaceTrust
nodes discover honest nodes for which to report nega-
tive direct trust by receiving their behavioral reports on
known spammers. In addition, misbehaving FaceTrust
nodes send behavioral reports for all the spam sources,
claiming 0% confidence that they are spammers. Fur-
thermore, misbehaving FaceTrust nodes refuse to store
negative behavioral reports regarding spamming hosts or
forward DHT queries that involve them.

The1K misbehaving nodes correspond to misconfig-
ured honest nodes or nodes that were compromised after
their users joined the social network and established trust
relationships. Thus, they are well-connected in the so-
cial network, being trusted by their pre-existing acquain-
tances. They do not correspond to a botnet that joins the
overlay and attempts to manipulate it, as such bots would
be unable to establish friend links, resulting in them hav-
ing very low identity trust. Thus, their influence would
be substantially diminished (Section 4.1.1).

In this simulation, a misbehaving node is able to iden-
tify all honest nodes in its view, the number of which is
on average∼ 100 for |V | = 1K. ForV = 1K, a node
retrieves on average∼ 3 behavioral reports that originate
from honest nodes in its view and∼ 9 behavioral reports
originating from misbehaving nodes. At the end the sim-
ulation, a FaceTrust node has0.81 average trust towards
honest nodes and0.04 average trust towards misbehav-
ing ones.

We observe that the effectiveness of the system is sub-
stantially reduced in the presence of misbehaving nodes.
However, forV = 1K it is still able to block54% of the
spam when nodes reject connections that they are75%
confident to be spamming.

In Figure 7 we report the number of spam connec-
tions per second that are characterized as such by the
regular nodes (true positives), throughout the spam cam-
paign. This is the same experiment as the one in Figure 6.
Spamming hosts also act as misbehaving FaceTrust
nodes reporting1.0 trust for misbehaving nodes and0%
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Figure 8: The rate with which spam connections are detected as a
function for appropriate and inappropriate social trust values. Connec-
tions for which a node is 75% confident that are spam are considered
detected by that node.

confidence that spamming nodes are spammers. At each
instance, the rate is derived as the number of detected
connections over the last10 seconds. We observe that
as time progresses and the trust of the spam bots propa-
gates in the network, the rate with which spam bots suc-
cessfully establish connections decreases. In addition, as
time progresses the trustworthiness of honest reporters
increases resulting in nodes trusting their reports faster,
resulting in more effectively blocking of spam connec-
tions. Furthermore as time progresses, the reputation of
dishonest FaceTrust nodes decreases resulting in less ef-
fective manipulation of the trust, and enabling more ef-
fective spam detection. Persistent bots are the easiest to
block as they get blacklisted early in their lifetime. Con-
sequently, after the first 600 sec, as the ephemeral bots
die out, the effectiveness of the system in blocking spam
is drastically improved.

The above results demonstrate that FaceTrust offers a
plausible spam blocking primitive. If it is used in con-
junction with existing email classification mechanisms it
has the potential for very wide threat coverage.

4.2.2 Significance of Social Trust

With this evaluation, we demonstrate the importance of
using the social network of FaceTrust admins to initial-
ize the direct trust between nodes to an appropriate value.
The settings for this simulation are the same as for Fig-
ure 7, except that all the direct trust values between so-
cially acquainted nodes are set equal to0.1, and the di-
rect trust is set to0.9 for only 5 instead of20 pre-trusted
nodes.

Figure 8 illustrates that appropriately initializing the
trust graph with proper social trust values yields more
effective blocking of spammers than not initializing the
trust graph. On average when the social trust is not ap-
propriately used, at the end of the simulation a FaceTrust
node has only0.11 trust towards honest nodes and0.01
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trust towards misbehaving ones. Had regular FaceTrust
nodes not leverage social trust, they would be discon-
nected from the rest of their trust graph and derive0.0
trust towards their peers. Consequently, they would be
unable to consider the behavioral reports of their peers
and reject spam connections.

This result motivates our design choice to tap into the
social trust between acquainted FaceTrust admins. So-
cial trust is important because it allows new nodes to
form a sufficiently connected reporter trust graph, which
they can use to derive appropriate transitive trust values
towards their peers. These trust values can be derived
without prior report verifications. Social trust also con-
tributes in trust values converging to correct ones faster
(given that the social trust values are appropriate), even
in the case report verifications are infrequent.

4.2.3 Internet Worm Simulation

To further demonstrate FaceTrust’s utility, we now eval-
uate our system’s ability to contain epidemically self-
replicating malicious code. We simulate the behavior
of the Slammer worm. We derive the Slammer epi-
demic parameters from [36], with the distribution of scan
rate among infected hosts being normal with mean 4000
scans/sec,N(4000, 20002). The parameterα of Equa-
tion 1 is set equal to0.3, and the parameterǫ (Section 3.3)
is set equal to0.1. Lastly, the parameterD (Section 3.5)
is set equal to3 sec.

Out of the 100K total simulated FaceTrust nodes,
10K nodes are able to detect worms with100% certainty
and not get infected (e.g. Vigilante [19] nodes). We re-
fer to these 10K nodes ashonest nodes. We refer to the
rest90K nodes asregular nodes. Regular nodes rely on
honest nodes to warn them about worm-carrying pack-
ets. The rest of the nodes cannot detect worms and do
not verify the behavioral reports of other nodes, there-
fore they do not generate behavioral reports and do not



send direct trust updates. Another1K nodes are misbe-
having FaceTrust nodes. These misbehaving nodes claim
0% confidence that slammer packets are worms. They
also claim1.0 direct trust for misbehaving nodes in their
view. In addition, misbehaving nodes refuse to store or
forward DHT queries regarding behavioral reports that
would help regular nodes to contain the worm. Slammer
randomly generates target IP addresses to scan, while the
IPs FaceTrust nodes are picked uniformly randomly in
the 32-bit IP space.

FaceTrust nodes retrieve behavioral reports for the
Slammer packet when their IDS application calls
GetTrust(packet signature,‘‘is worm’’). They
submit behavioral reports as soon as their application
classifies a packet as being the slammer worm. They
update their direct trust as soon as the node verifies the
behavioral reports of another node.

Each node has a1K-node view of the FaceTrust net-
work. Depending on the threshold of confidence for de-
ciding whether a packet is worm, nodes that are> 50%
or > 75% confident that a packet is worm do not get in-
fected. Nodes that are not as confident about the packet
being worm get infected upon being scanned and start
scanning themselves. The epidemic originates from a
single infected host at the start of the simulation. Infected
nodes do not act as misbehaving FaceTrust nodes.

Figure 9 shows the number of regular nodes that are
> 50% or > 75% confident of slammer packets being
a worm as time progresses. In addition, it shows the
number of hosts that become infected in the absence of
a defense mechanism. Our results show that FaceTrust
converges fast towards all honest FaceTrust nodes hav-
ing greater than50% confidence that the worm packet is
malicious. The rate of convergence is faster than the rate
of worm propagation. This result implies great potential
for containment of self-replicating malicious code.

5 Related Work

We now discuss prior work pertinent to FaceTrust’s de-
sign.

5.1 Reputation Management Systems

FaceTrust is inspired by prior work on reputation and
trust management systems [14, 23, 32, 34]. Well-known
trust and reputation management systems include the rat-
ing scheme used by the eBay on-line auction site, object
reputation systems for P2P file sharing networks [26,52]
or schemes to incent seeding in P2P content distribu-
tion systems [12, 39]. Some reputation systems claim
resilience to false reports and collusions [16, 20], how-
ever the Sybil attack if successful enables an adversary
to defeat these defenses. In contrast to these systems,

FaceTrust applies to a broad range of entities, ranging
from data objects to end systems. second, FaceTrust
incorporates social trust to mitigate false reporting and
Sybil attacks; other systems typically rely on a central
certification authority, e.g. [52].

In EigenTrust [26] nodes converge to the same trust
value because a node learns about all the interactions be-
tween peers in the system, while in FaceTrust nodes learn
only about the interactions involving nodes in their view.
FaceTrust aims at enabling nodes to have a reliable es-
timate of the probability that a peer is trusted and not
in system-wide trust convergence. Therefore, FaceTrust
is a more lightweight reputation management protocol,
which does not require multiple iterations. EigenTrust
reputation values are normalized so that the sum of the
reputation values for all hosts is1.0. The rationale is that
no peer should be able to disproportionately affect the
reputation ranking of a peer by sending a highly skewed
reputation update. EigenTrust’s normalized reputation
values do not map to the probability that a host’s report is
valid, while FaceTrust trust values in[0, 1.0] do. Eigen-
Trust values can be used for ranking hosts, but cannot
be used to derive the probability that a host’s reports are
trustworthy.

PageRank [15] leverages the link structure of the web
to rank the popularity and significance of web search re-
sults. The PageRank of a web page corresponds to the
probability that a web surfer will eventually visite this
site by randomly following links. It is similar in prin-
ciple to EigenTrust, with the main difference being that
trust in PageRank is derived by incoming links, while in
EigenTrust by explicit trust assignments between nodes
derived by direct observations of each other’s behavior.

5.2 Exploiting Social Networks to Derive
Trust

Several works exploit the trusted relations that form so-
cial networks to reliably assess the trustworthiness of en-
tities [22,24,33,40,43,44,60]. Unlike FaceTrust, they do
not use tagged social links both to bootstrap trust values
between socially acquainted nodes and to defend against
Sybil attacks.

5.3 Collaborative Unwanted Traffic Miti-
gation

FaceTrust is a generic collaborative threat mitigation
framework that can be used to defend against a large va-
riety of attacks against the Internet infrastructure. Vigi-
lante [19] and Sweeper [50] are also collaborative threat
mitigation platforms. However, they are purpose-built
for worm containment through malicious code detection



and distribution of antibodies. Vigilante employs dy-
namic taint analysis within an isolated virtual machine
sandbox. Sweeper uses lightweight monitoring tech-
niques and lightweight checkpointing to detect and re-
cover from attacks during normal execution. Vigilante
requires that a host is equipped with a sandbox in order to
verify the antibody-carrying Self Certifying Alerts sent
by other Vigilante nodes. In Sweeper, it is assumed that
the consumers of antibodies produced by other nodes in
the system fully trust the producers. Since FaceTrust em-
ploys reliable trust metrics, nodes in our system are able
to determine the validity of alerts and antibodies without
having to verify them themselves.

In [17] distributed monitors use heuristics to detect
worms and report there fingerprints using a DHT. Zou
et al. propse a system [61] in which distributed monitors
report worm signatures to a centralized server.

Prior work also includes proposals for collabora-
tive spam filtering [1, 58, 59]. Unlike these systems,
FaceTrust explicitly addresses the issue of trustworthi-
ness of the collaborating spam reporters through a dis-
tributed reporter reputation management system. Kong
et al. [28] consider non-compliant behavior, using Eigen-
trust for reporter reputation. Nodes exchange email
signatures,filter email based on content Besides being
threat-specific, the aforementioned solutions only enable
classifying the contents of emails and not the source of
spam. This requires email servers to waste resources on
email reception and filtering. FaceTrust can assign trust
metrics to sources, thereby rejecting unwanted email
traffic on the outset.

TrustedSource [6] employs a centralized repository to
which more than 7000 globally distributed submit behav-
ior reports. Applications query the repository which re-
turns the reputation for the specified IPs,domain names
or URLs. The reputation can be one of the five trusted,
neutral, unverified, suspicious, and untrusted. A sim-
ilar infrastructure is used by the SpamHaus [7] and
Trend Micro [8], which rely on worldwide sensors to
report the IP address of spam senders. Based on the
sensor’s feedback SpamHaus publishes blacklists of IPs
known to send spam. Unlike FaceTrust, the reputation
for IPs/domains/URLs or the blacklists depend only on
the reported values of the sensors/honeypots and not on
the trustworthiness of the sensors themselves. These
sensors are deployed by TrustedSource, SpamHaus and
TrendMicro or are assumed to be trusted. We envision
FaceTrust to consist of a much larger number of sen-
sors/reporters as it is going to be a P2P system installed
by bot system administrators and casual Internet users
within large numbers of distinct trust domains. In ad-
dition, centralized reputation services incur a delay be-
tween the first reception of report of misbehavior and the
time the reputation of the entity is publicly available, of-

fering a rather large window of opportunity to attackers.
This delay can be attributed to the fact that these services
determine the reputation of an entity once the number
of reports exceeds a predetermined threshold in order to
avoid incorrect classifications. FaceTrust does not need
to incur this delay because it leverages the history of past
interactions to readily determine trust values.

Zang et al.’s Highly Predictive Blacklisting [57] com-
pares blacklists submitted by distinct distributed contrib-
utors. They rank blacklist reports based on similarity.
The intuition is that if two contributors have been at-
tacked by the same attackers in the past they are more
likely to be attacked by the same attackers in the future.
Thus, reports from a contributor that had similar experi-
ences in the past should weigh more.

Behavioral blacklisting [42] combines spamming ac-
tivity across multiple spam target domains. It identi-
fies spamming IP addresses based on the observation
that spamming botnets tend to send large amounts of
emails from many IP addresses, to relatively small num-
ber of domains over a short period of time. The sys-
tem is able to capture this behavior and cluster offend-
ing IP addresses based on spam target domains and time
frames. FaceTrust can be used to assign trust values to
email sender behaviors based on spam content, sending
frequency, time patterns etc as reported in [42,54].

Ostra [35] leverages social networks to tackle un-
wanted communication and is inherently resilient to the
Sybil attack. It bounds the total amount of unwanted
communication a user can produce based on the num-
ber of trust relationships the user has and the amount of
communication that has been flagged as wanted by its
receivers. In our setting, Ostra could be used to regu-
late the amount of behavioral reports that each FaceTrust
node can send. However, Ostra assumes that all com-
munication is verifiable and can be flagged as wanted.
However, this is not always the case in FaceTrust where
nodes do not always have the ability to verify behavioral
reports. Thus, instead of limiting the number of behav-
ioral reports a node can produce, we chose to assigns lev-
els of trustworthiness to each report that depend both on
the node’s reporting history and the social relationships
of the node’s administrators.

Sybil Attack Defenses The most common strategy
against Sybil attacks is perhaps relying on a central au-
thority that establishes a Sybil-free identity domain by
binding each entity to a single cryptographic identifier
(e.g. public key certificate). Douceur [21] states that
this approach is the only one fully capable of preventing
Sybil attacks. The challenges of this approach include
the cost of deployment, privacy and anonymity issues,
cryptographic identifier revocation etc. In addition, this
approach relies on the fact that the trusted authority is



fully capable to distinguish unique identities, which may
not always be true.

Another common defense against Sybils is resource
testing of computing or storage capability. The under-
lying assumption is that a Sybil attacker does not pos-
sess enough resources to perform the additional tests im-
posed on each Sybil node. Some drawbacks with re-
source testing are listed in [21], such as the fact that
attackers subvert this defense by tricking humans into
solving CAPTCHAS [10] posted on their website or pre-
sented by malware on infected machines.

FaceTrust’s design is inspired by SybilGuard and
SybilLimit [55, 56]. These systems defend against Sybil
attacks [21] by exploiting the fact that OSNs can be used
for resource testing, where the test in question is a Sybil
attackers ability to create and sustain acquaintances.

SybilGuard and SybilLimit are decentralized proto-
cols that operate over a distributed social network. Given
a request for connection, the protocol decides whether
the request is accepted or rejected. SybilLimit restricts
a Sybil attacker that managed to socially associate with
O(

√

(n)/ log(n) nodes in the social network to perform-
ing collaborative tasks with onlyO(

√

(n) legitimate net-
work nodes, regardless of how many Sybils it deploys.
In SybilGuard/Limit, a verifier either accepts a suspect
as a node with which to establish a social edge with or
not. However, in real social network large clusters of
legitimate social network nodes are frequently not well-
connected with other clusters, meaning that nodes from
one cluster may reject collaboration requests from legit-
imate nodes in other clusters. FaceTrust Sybil defenses
are designed for centrally maintained online social net-
works (e.g. Facebook). They are conceptually simpler
because they leverage information available to the OSN
provider (i.e. the complete social graph topology), and
intend to not completely ignore input from not well-
connected nodes, but instead assign low weight (identity
trust) to it.

A SybilGuard-like technique is used by Leshniewski
et al. [30] to limit the Sybil attack in one-hop DHTs.

5.4 Social-network-based Applications

Instant messaging networks such as Google Talk, Ya-
hoo IM, and MSN are prime examples of Internet ap-
plications that form online social networks. The re-
search community and the industry has also created
social-networking-basedapplications for file-sharing and
backup [9,31,49]. FaceTrust extends the utility of social
networks to providing a trust layer for Internet entities,
aimed at mitigating unwanted traffic.

6 Conclusion

We have presented FaceTrust, a scalable peer-to-peer
system for the rapid propagation of reports concerning
the behavior of Internet entities (hosts, email signatures,
packet fingerprints etc). FaceTrust nodes use each other’s
reports and the social network of their human users to
provide to applications a quantitative measure of an en-
tity’s trustworthiness: the likelihood that an entity is as-
sociated with a specified malicious action. Applications
can in turn use this measure to make informed decisions
on how to handle traffic associated with the entity in
question.

Our simulation-based evaluation demonstrated our de-
sign’s potential for the suppression of two common types
of unwanted traffic. FaceTrust nodes were able to iden-
tify 71% of spam connections with greater than75% con-
fidence. In addition, FaceTrust nodes became aware of a
worm fingerprint at a faster rate than the worm propa-
gated.
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