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Abstract tage points of centralized services are limited in num-

o ... bers, but attacks launched using large botnets are becom-
Unwanted traffic mitigation can be broadly classified. ~ - : o )
ing increasingly surreptitious. In those attacks, onemali

into two main approaches: a) centralized security infras-_. : )
o . cious host may attack multiple domains, each for a short
tructures that rely on a limited number of trusted moni-

tors to detect and report malicious traffic; and b) highly
distributed systems that leverage the experiences of mu
tiple nodes within distinct trust domains. The first ap-
proach offers limited threat coverage and slow response
times. The second approach is not widely adopted, partl

due to the lack of guarantees regarding the trustworthit~ . . i
g g g rapid and reliable detection and suppression of unwanted

ness of nodes that comprise the system. . . .
. . traffic. These early systems assume compliant behavior
Our proposal, FaceTrust, aims to achieve the trust;

worthiness of centralized security services and the wid from all participating peers, which is hardly true given

: .?he heterogeneity of the Internet. Compromised hosts
coverage and responsiveness of large-scale collaborative

threat mitigation. FaceTrust is a large-scale peer-to-peeContrOIIeOI by attackers may join the system, polluting the

system designed to rapidly propagate behavioral r(_}portgetecnon mechanisms. In addition, honest peers may be-

) - - come compromised after they join the system.
concerning Internet entities (e.g., hosts, email sigmastur Wi laborati h .
etc.). A FaceTrust node builds trust for its peers by au-, ''c ProPOs€ acolia orative peer-to-peer threat mitiga-

diting their behavioral reports and by leveraging the SO_tion system (FaceTrust) that uses social trust embedded

cial network of FaceTrust administrators. A FaceTrust'" online social networks (OSN) to defend against ma-
node combines the confidence its peers have in their ow

period of time [27,41], reducing the effectiveness of ma-
|i_cious traffic detection with a small number of vantage
points.

Motivated by this problem, researchers have proposed
ollaborative worm containment systems [17, 61] and
eer-to-peer spam filtering platforms [58, 59] to achieve

Hcious peers. Each FaceTrust node disseminagésiy-

reports and the trust it places on its peers to derive thépral reports, i.e. security alerts reggrding 'F‘te”‘e‘ enti- .
likelihood that the entity is malicious (e.g. being a spamt'_es' such as IP .addresses, paf:ket fmgerprlnt_s, and email
bot) signatures that it observes to its peers (Section 3). The
o . . I | of the system is to ensure that the behavioral reports

The simulation-based evaluation of our approach indi-3°2 L .
PP each the destination nodes faster than the threat itself,

cates its potential under a real-world deployment: durin ) :
a simulated spam campaign, FaceTrust nodes charact r_10_| that t_hey are credible enough to Warran_t action by
ized 71% of spam bot connections as such with confi. eir receivers. Each FaceTrust node associates a trust
dence greater thars%. score to another Fachrust node and uses this score to
assess the trustworthiness of the behavioral reports orig-
inated by the other node.
1 Introduction FaceTrustis designed to be a peer-to-peer system com-
prising of nodes across different trust domains. The
The majority of the currently deployed Internet threatlarge scale of the Internet inhibits a node from directly
mitigation techniques rely on centralized infrastructure assessing the trustworthiness of all participating nodes.
and place trust on a small number of security authoritiesHowever, in order for the system to be effective in
For instance, email systems and browsers rely heavily omitigating numerous, heterogeneous, and fast-spreading
a few centralized IP [7] and web site [4,5] reputation ser-threats, it must enable a FaceTrust node to interact with
vices. End-users rely on software vendors to update theia large number of other FaceTrust participants, while be-
anti-virus/malware tools or to release updates that patcing aware of their trustworthiness.
their systems’ vulnerabilities. To address this challenge, FaceTrust uses social trust
Unfortunately, centralized services are often found toto bootstrap direct trust assessments, and then employs a
maintain out-dated blacklists [42] or respond slower thanightweight reputation system to evaluate the trustwerthi
the worm infection rate [36, 37], offering a rather large ness of nodes and their behavioral reports (Section 3.3).
window of opportunity to attackers. Moreover, the van- Our insight is that each FaceTrust node will be admin-



istered by human administrators (admins), and nodes
. . . . . . Behavioral Report and Direct Trust Update

maintained by trusted admins are likely to disseminate Repository

trustworthy reports. Therefore, a FaceTrust node may

obtain a direct trust assessment with a number of nodes ﬂ 1
with whom its admin has social relationships. Social re- P ——— -
lationships between admins can be obtained from mas- FRede /
sive Online Social Network (OSN) providers, such as !
Facebook and MySpace. FaceTrust then uses a reputa-
tion management system [23, 34] to aggregate the nodes’ ﬂ 1

collective experiences in order to enable one node to T T
form opinions of another node’s trustworthiness despite

the lack of past history of interactions. y i / i
. P y Online i

Reputation systems are known to be vulnerable to the 8’ Social

Sybil attack [21]. Sybil attacks subvert distributed sys- Admin  Network &

tems by introducing numerous malicious identities un- S /

der the control of an adversary. Through the use of these

identities the adversary acquires disproportional influ-

ence over the system. To mitigate this attack, FaceTrust

again uses the social network to assess the probabilityetwork with only10% of nodes having spam classi-
that a node is a Sybil attacker, i.e. itentity trust  fication capability, nodes with no local spam detection
(Section 3.2) Each FaceTrust node’s identity is assogapability are able to identif§1% of connections from
ciated with its admin’s identity. The latter is verified spammers with greater than% confidence. In a simi-
through the social network using a SybilLimit-like tech- |5, setting, where only0% of the nodes are able to clas-
nique [55], which is shown to be effective in identifying sify worms, behavioral reports that carry worm signa-
sybils among social network users. tures are disseminated faster than the rate at which the
Our design enables a FaceTrust node to use both thgorm spreads.
identity trust and the reputation of another node to as-
sess the overall trustworthiness of the other node’s be- ]
havioral report. The originator of a behavioral reportit- 2 System Overview
self also assigns a confidence level to the report, as traf-
fic classification has a level of uncertainty. The trust- !N this section, we provide a high-level description of our
worthiness of a node and its confidence level in a reporfystem and the security challenges it addresses.
determines whether a node should trust a report or ig-
nore it. Trusted reports can be use'd for di\_/erse purposes 1 EFaceTrust Components
depending on the FaceTrust node’s function. For exam-
ple, email servers can use them to automatically filter ouFigure 1 depicts FaceTrust’s architecture. At a high-
email messages that originate from IPs that have beelvel, the FaceTrust system comprises the following
designated as spammers with high confidence. IDS syssomponents: 1) human users that administer networked
tems can use them to block packets that originate fromlevices/networksadming and join a social network;
suspicious IPs or have signatures that have been desi@) end systems that are administered by specific admins
nated as malicious. and participate in monitoring and reporting the behavior
We evaluate our design (Section 4) usingak’-node  of entities FaceTrust nodgs 3) behavioral reports sub-
sample of the Facebook social network. We first evalu-mitted by FaceTrust nodes concerning entities they ob-
ate the effectiveness of our SybilLimit-like technique in serve; 4) direct trust updates made available by FaceTrust
mitigating Sybil attackers. Our results show that honesnodes reporting their perceived trustworthiness of their
nodes have- 0.89 average identity trust, whereas Sybil peers; and 5) a distributed repository that receives and
nodes in clusters with more than 200 nodes have less thagtores behavioral reports and trust updates.
0.05 average identity trust. We also show thatitis prac- The same administrator that administers a FaceTrust
tical for a typical centralized social network provider to node also administers a group of applications that in-
support the proposed identity trust primitive. In addi- terface with the node. These applications may be
tion, we demonstrate through simulation that collaborat-equipped with Internet traffic monitoring and character-
ing FaceTrust nodes are able to suppress common typézation functionality, i.e., they are able to detect email
of unwanted traffic in a reliable and responsive mannerspam, port scanning traffic, DoS activity etc. Exam-
Our simulations show that in @00/ -node FaceTrust ples of applications with such monitoring and charac-

Figure 1: FaceTrust architecture.



terization functionality are honeypots [47,51], backscat direct trustvalues (Section 3.3). If a nodeis able to
ter/darknet traffic detection infrastructure [13, 47] andverify the behavioral reports of nodeit can determine
worm detection and containment systems [19, 45, 50]a direct trust valué,;;. The FaceTrust nodes share these
They may also be applications that utilize concrete devalues with other FaceTrust nodes by exchangiingct
scriptions of unwanted traffic to filter it out, such as email trust updates For reasons of scalability and efficiency,

filters or IDS systems. a node considers the behavioral reports of only a (possi-
bly random) subsel’” (including itself) of all the nodes
2.2 Behavioral Reports in the FaceTrust network. Consequently, nodes submit

and retrieve direct trust updates only for node¥inWe
A traffic characterization application uses therefertoV as a node'view.
Report(entityID, action, confidence) call FaceTrust also relies on the fact that nodes comprising
of the FaceTrust node RPC API to feedback its observethternet systems such as email servers, honeypots, IDS
behavior of an entity. The first argument identifies etc are administered by human admins. These human
the source of the threat (e.g. an IP address, a packefsers maintain accounts in online social networks (OSN).
fingerprint etc.) The second argument determines th&aceTrust leverages OSNs in the following two ways: a)
type of security threat the report concerns (e.g. “is ait defends against Sybil attacks [21] by exploiting the fact
worm”, “is a spam bot” etc), and the third argument is that OSNs can be used for resource testing, where the test
the confidence with which the application is reportingin question is a Sybil attacker’s ability to create and sus-
that the specified entity is performing the specified actain acquaintances. Depending on the result of the test,
tion. The latter takes values %% to 100% and reflects the OSN provider assigns adentity trustvalue to the
the fact that in many occasions traffic classification hasadmin; and b) It initializes théirect trustvalues in the
a level of uncertainty. For example, a mail server thatabsence of prior interactions between FaceTrust nodes,
sends both spam and legitimate email may or may noby considering the trust that is inferred by associations
be a spamming host. in the social network of administrators.

In turn, the FaceTrust node submits a corresponding Finally, an  application can use the
behavioral report to the repository to share its experienc@etTrust (entityID, action) call of the FaceTrust
with its peers. For example, if a nods spam analysis node RPC API to obtain a trust metric that corresponds
indicates that half of the emails received from host withto the likelihood of an entitylD performing the specified
IP I are spamj reports: malicious action. The FaceTrust node derives this metric
by aggregating behavioral reports regarding entitylD.
These behavioral reports are weighted by the reporting

In addition, FaceTrust nodes are able to revoke beha/?0de’speer trust

ioral reports by updating them. If for example at a

Iatgr time, i determines _that no spam ori.ginf_zltes fromo 4 Security Challenges

1, it sends a new behavioral report in which it updates

the confidence value froi0% to 0%. Each report FaceTrustis a collaborative platform aiming at suppress-

is signed by the reporting FaceTrust node’s public keying malicious traffic. As such, it is reasonable to assume

(Section 3.1) for authentication and integrity. that FaceTrust itself will be targeted in attempts to dis-

rupt its operation. FaceTrust is an open system, mean-

ing that any admin with a social network account and a

device can join. Due to its highly distributed and open

Each FaceTrust node assigrnsegr trustvalue to each of  nature, it faces the following challenges:

its peers in the network. This trust value determines thd~alse Behavioral Reports. Malicious FaceTrust nodes

trustworthiness of the peer’s behavioral reports. fjiber ~ may issue false or forged reports aiming at reducing the

trustis determined using two dimensions of trustre)  system'’s ability to detect unwanted traffic or disrupting

porter trust and b)identity trust We describe these two legitimate Internet traffic.

dimensions below. The receiver of a behavioral reporBehavioral Report Suppression or Alteration. We im-

derives its confidence in the correctness of the receiveglement the distributed repository for behavioral reports

report from the behavioral report’'s confidence and theas a Distributed Hash Table (Section 3.5). Consequently,

peer trust. the system is vulnerable to attacks on DHT routing [18]
FaceTrust nodes collectively compugporter trust  aiming at preventing legitimate nodes from retrieving im-

values by employing a reputation management mechagportant behavioral reports. In addition, since the reports

nism. This mechanism relies on FaceTrust nodes verimay be stored by malicious nodes such nodes may at-

fying each other’s behavioral reports to derive individualtempt to alter their content.

[behavioral report] I, is spam bot, 50%

2.3 Trusting an Entity



False Direct Trust Updates.To address false behavioral signed with Facebook’s public key). This certification
reports, FaceTrust employs a reporter reputation systeimechanism closely resembles a typical X.509 PKl infras-
to determine the amount of trust that should be placedructure, in which the hierarchy of certificates is always
on each user’s reports. However, the reputation systera top-down tree, with a root certificate at the top, repre-
itself is vulnerable to false reporting as malicious nodessenting a CA that is so central to the scheme that it does
may send false or forged direct trust updates. not need to be authenticated by some trusted third party.
Sybil Attack. An adversary may attempt to create mul-  The certifying OSN provider can either be the provider
tiple FaceTrust identities aiming at increasing its abil-of existing popular OSN (e.g. Facebook) or a third-
ity to subvert the system using false behavioral reportparty OSN application (e.g. Facebook application [3])
and direct trust updates. Defending against Sybil attackprovider. In the first case, the popular OSN provider has
without a trusted central authority is hard. Many decen-access to the complete social network, and augments the
tralized systems try to cope with Sybil attacks by bind-OSN application API to allow applications to query the
ing an identity to an IP address. However, maliciousidentity trust of the OSN’s users. OSN providers are
users can readily harvest IP addresses through BGP hincented to provide this service because it adds value
jacking [41] or by commanding a large botnet. to their service, making the service more attractive to
subscribers. In the second case, a third-party deploys
. FaceTrust as an OSN application and has access only to
3 FaceTrust Design the social network of users using FaceTrust. Although
) ) ] ] the FaceTrust-only social network is not as complete as
In this section we describe the design of our system.  he OSN provider's one, the fact that it is smaller makes
its analysis less computationally expensive. In addition,
3.1 OSN Providers as Certification Au- itdoesnotrequire the adoption of the service by the OSN
thorities provider. For ease of exposition, for thg rest of the paper
we refer to both the popular OSN provider and the third-
For an open system such as FaceTrust to operate reliablgarty OSN application provider &SN provider
node accountability in the form of node authentication To defend against forged or falsifiedbehavioral reports
and prevention of Sybil attacks is of the utmost impor-and direct trust updates, FaceTrust nodes sign messages
tance. that originate from them using their private key. When
Existing certification authorities are not suitable for & nodei exchanges direct trust updates with a ngder
open, large scale P2P architectures because they requiieceives behavioral reports that are claimed to originate
users to pay a certification fee-$20 for class 1 certifi- from j, i acts as follows. If does not havg in its view,
cate). In addition to CAs being expensive, they currentlyit obtains j's public key certificate fromy and verifies
represent a monopoly for a very important Internet prim-it using the OSN provider’s certificate. After verifying
itive, and we consider breaking this monopoly beneficial.j's public key,i verifies the signed direct trust update or
We propose to leverage existing OSN repositorieg?ehavioral report that is claimed to originate frgm
as inexpensive, Sybil-mitigating certification auth@sti
OSNs are ideaIIy.pqsif[io_ned to pe_rform such funqion be—3_2 Determining the Identity Trust
cause using SybilLimit-like techniques (see Section 3.2)
they can determine the amount of confidence one caihere is typically one-to-one correspondence between
place on a node’s identity. We refer to this confidencea real user’s social network identity and its real iden-
asidentity trust They are able to perform inexpensive tity. Although, malicious users can create many iden-
resource tests by analyzing the centrally maintained sctities, they can establish only a limited number of trust
cial graph. relationships with real humans. Thus, groups of Sybil
Each node that participates in FaceTrust is adminisattackers are connected to the rest of the social graph
tered by human users that have accounts with Onlinevith a disproportionally small number of edges. The
Social Network providers. The system needs to ensurérst works to exploit this property was SybilGuard and
that each user’s social network identity is closely cou-SybilLimit [55, 56], which bound the number of Syhil
pled with its FaceTrust node. To this end, FaceTrust useglentities using a fully distributed protocol.
an OSN application as a front-end to the social network Based on a similar concept, FaceTrust's Sybil detec-
that the human user has joined. tion algorithm determines the strength of a FaceTrust
Every FaceTrust admin obtains a public/private keyuser’s identity. This algorithm is executed solely by the
pair that is associated with its social network identity. OSN provider over its centrally maintained social graph
It obtains its public key in the form of a public key cer- Z. An admin’s: identity is considered weak if it has
tificate that is signed by the trusted OSN provider (e.g.not established a sufficient number of real relationship’s



over the social network. Upon being queried by an admirtinct routing tables for verifiers and suspects in order to
v, the OSN provider returns a value [0, 1.0], which  avoid undesirable correlation between the verifiers’ ran-
specifies the confidence of the provider that a specifidom routes and the suspects’ random routes. For €ach
nodes is not participating in a Sybil attack, i.e. the prob- the OSN provider runs the SybilLimit-like algorithm is
ability thats is not part of a network of Sybils. as follows:

First, we provide some informal background on the
theoretical justification of SybilGuard and SybilLimit. It 1. Foreach of théverifiersv, it picks a random neigh-

is known that randomly-grown topologies such as so-  bor of v. It draws along the random neighbors
cial networks and the web are fast mixing small-world ~ random routes of lengtls = O(log ), for each in-
topologies [11,25,53]. Thus in the social graphvith stance of the routing tables, where is the number
n nodes, a walk 0B (y/nlogn) steps contain® (y/n) of nodes inZ. It stores the last edge (tail) of each

independent samples approximately drawn from the sta-  Verifier random route.
tionary distribution. When we draw random walks from
a verifier nodey and the suspeat if these walks remain

in a region of the network that honest nodes reside, both
walks draw©(,/n) independent samples from roughly
the same distribution. It follows from the generalized
Birthday Paradox [56] that they intersect with high prob-
ability. The opposite holds if the suspect resides in a
region of Sybil attackers that is not well-connectedto the 3 £, each verifiep, if one tail fromss intersects one

reg|0n_of honest nodes. ) tail from v, that verifierv is considered to “accept”
SybilGuard replaces random walks with “random s. We refer to this step agerification.

routes” and a verifier node accepts the suspect if random
routes originating from both nodes intersect. In random 4. It computes the ratio of the number of verifiers that
routes, each node uses a pre-computed random permu- accepts over the total number of verifieis That
tation as a one-to-one mapping from incoming edges to  ratio is the computed identity trust scaré.
outgoing edges. We refer to this random permutation as
routing table. As a result, two random routes entering an Nodes query the OSN provider for the identity trust
honest node along the same edge will always exit alon@f their peers. The OSN provider performs the above
the same edge (“convergence property”). This propertycomputations periodically and off-line to accommodate
guarantees that random routes from a Sybil region that ifor topology changes. The OSN provider stores the result
connected to the honest region through a single edge wibf this computation for each node as a separate attribute.
traverse only one distinct path, further reducing the prob-
ab|I|ty Fh?t a Sybil’'s random rouFes. vylll mte_rsect with 3.3 Determining the Reporter Trust
a verifier's random routes. SybilLimit [55] is a near-
optimal improvement over the SybilGuard algorithm. In Malicious nodes may issue false behavioral reports to
SybilLimit, a node accepts another node only if randommanipulate the trust towards entities. In addition, mis-
routes originating from both nodes intersect at their lastconfigured nodes may also issue erroneous reports.
edge. For two honest nodes to have at least one inteFaceTrust can mitigate the negative impact of incorrect
sected last edge with high probability, the required num-behavioral reports by assigning higher weights to reports
ber of the random routes from each node should be apsbtained from more trustworthy FaceTrust nodes. Con-
proximatelyr = ©(,/m), wherem is the number of ceptually, each FaceTrust nodemaintains a reporter
edges inZ. The length of the random routes should betrust valuert;; to every other FaceTrust nodein its
w = O(logn). view, j € V;. This trust score corresponds to nade
With FaceTrust's SybilLimit-like technique the OSN estimation of the probability that nogés reports are ac-
provider computes an identity trust score for each nodeurate. It is obtained from three sources: trust attainable
s in the social graplT. At initialization time, the OSN  from online social networks, direct behavioral report ver-
provider select$ random verifier nodes. It also creates ification, and transitive trust.
2r independent instances of pre-computed random per- First, FaceTrust relies on the fact that FaceTrust nodes
mutation as a one-to-one mapping from incoming edgesire administered by human users. Competent and benign
to outgoing edges (routing table). The firstouting ta-  users are likely to maintain their nodes secure, and pro-
bles are used to draw random routes from suspect nodesde honest and truthful reports. The trust on the compe-
s and the rest routing tables are used to draw random tency and honesty of human users could be obtained via
routes from the verifier nodes SybilLimit uses dis- social networks. FaceTrust admins maintain accounts in

2. It picks a random neighbor afand draws along it
r random routes of lengthy = O(logn), for each
instance of the nodes’ routing tables. It stores the
last edge (tail) of each suspect random route. We
refer to step$1) and(2) of the algorithm asandom
routing.



online social networks. An admihtags her acquain-
tance admiry with a social trust scoret;; in [0.0, 1.0]
based on her belief offs ability to manage her FaceTrust

trust path, resulting in faster convergence to high confi-
dence regarding the actions entities perform. Last, it mit-
igates the effect of misbehaving nodes under-reporting

node(s). This value is used to initialize a direct trust ecor their trust towards honest nodes.

between two FaceTrust nodeand;: d;; = st;;.

Second, a FaceTrust nodelynamically updates the
direct trustd,; by comparing behavioral reports submit-
ted by the nodg with its own reports. A nodé may
verify a report from a nodg for an entitye, if i has

If T; is very sparse (e.dE;| being smaller or slightly
larger than|V;|), a nodei may not be able to derive
meaningful trust values for its peers ¥ using the re-
port trust grapt?;(V;, E;). To remedy this situatiori/;
includes the nodes with whichis socially acquainted

also generated a recent report with respect to the samend has assigned social trust values to. In addition, the
entity. 7 may also probabilistically choose to observe node augments; with directed edges from itself towards
e solely for the purpose of verifying reports of another a pre-trusted se of reliable nodes. The size of the
nodej. The portion of the received behavioral reports pre-trusted and is almost the same for all nodes in the
that the FaceTrust nodes verify is a tunable parameteFaceTrust network. Nodes become aware of those reli-

Intuitively, if : and;j share similar opinions on i should
have a high trust ifj’s reports. Letvfj be a measure of
similarity in [0, 1.0] between andj’s k:, report. A node
1 may updates its direct trust gpusing an exponential
moving average:

At =axdf +(1- Las 1)
As i verifies a large number of reports fromthe di-
rect trust metricdfj gradually converges to the similarity

of reports fromi andj.

By updatingd;; and making it available for retrieval
to other nodes; enables its peers € V; to build their
FaceTrust reporter trust gragh(V;, E;). The reporter
trust graph of a nodé consists of only the nodes in its
view V;, and its directed edge sE} consists of the direct
trustd,,, for eachu,v € V;. If a nodeu has not released
a direct trust update for a noded,,, is treated as being
equal t00.0.

Third, a FaceTrust nodeincorporates direct trust and
transitive trust to obtain's overall trust toj: rt;;. Due
to the large number of FaceTrust nodes, the admin of
FaceTrust node may not tag a social trust;; to the
admin of a nodegj. Moreover, due to the variety and
large number of observed entities, nodesidj may not

EY)

able nodes either via word of mouth over the social net-
work or by querying the OSN provider. Nodes do not
send direct trust updates for these pre-trusted nodes.

3.4 Determining the Trust for an Entity

As mentioned above, a FaceTrust nadmay receive
multiple behavioral reports originating from multiple
nodesj € V and concerning the same entityfor the
same actiom. Each report is marked with a level of con-
fidencec; of the reporterj. Thus,i needs to aggregate
the behavioral reports to determine an overall confidence
GetTrust (e,a) thate will perform the actioru.

When an admin receives multiple reports concern-
ing the same entity and action pdir, a), it derives the
overall trustGetTrust (e,a) weighing the behavioral
reports’ confidence by the peer trust of their reporters.

ZjEVi Ttij Zdj Cj (6, CL)

GetTrust(e,a) = 3)

ZjEVi Ttij Zdj

a
3.5 FaceTrust Repository

A node can exchange behavioral reports and direct trust

have encountered the same entities and are therefore iPdates with any other node in the FaceTrust network re-

able to directly verify each other’s reports. Furthermor

1 can further improve the accuracy of its trust metric

for j by learning the opinions of other FaceTrust node
aboutj. The overall reporter trust;; can be obtained as
the maximum trust path in nodés reporter trust graph
T;(Vi, E;), in which each edge — v is annotated by
the direct trusti,,,,. That is, for each path € P, where
P is the set of all paths between nodemndj:

(2)

rti; = mazpep(Ily—vepdun)

e gardless of whether the admins of the nodes are acquain-

tances in the social network. With this design choice,
Jwe ensure that behavioral reports and direct trust updates
reach the interested nodes on time, improving the threat
coverage of our system. We also enable users that are not
well-connected in the social network to peer with other
trustworthy nodes.

Under typical deployment scenarios and for varying
types of unwanted traffic, nodes often exchange behav-
ioral reports about many malicious entities. The fre-
quency with which behavioral reports and trust updates

We use the maximum trust path because it can be effiare submitted and retrieved would impose a significant
ciently computed with Dijkstra’s shortest path algorithm scalability challenge to a centralized FaceTrust reposi-

in O(|E|log |V|) time for a spars€’. In addition, it
yields larger trust values than the minimum or averag

tory. Therefore, although we maintain the FaceTrust so-
ecial network in a centralized manner, we design a dis-
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Figure 2:Example of the operation of a small FaceTrust network.

tributed repository to which nodes submit to and retrieveused to ensure that the nodes do notincur the overhead of
from behavioral reports and direct trust updates. communicating the update if it is not sufficiently large.

Our distributed repository consists of two portions, Employing a DHT in an adversarial environment
one for behavioral reports and one for direct trust up-poses several security challenges [18, 46]. One of these
dates. The portion of the repository tasked with main-challenges is the “secure node ID assignment”, which is
taining behavioral reports is implemented as a a Dis-addressed in our system by the randomized generation of
tributed Hash Table, e.g Chord [48]. Nodes form a DHT public/key pairs. This results in nodes not being able to
to store and retrieve behavioral reports updates concermecide what their Chord identifier is. The Sybil attack is
ing nodes in their view. When a node queries for Be-addressed through the use of our OSN Certification Au-
havioral reports it is interested on the reports for a sin-thorities; nodes with very low identity trust are barred
gle entity/action pair. These reports are sent by multiplefrom participating in the DHT. Nodes with high identity
nodes, thus for efficiency it is reasonable to index(key)trust exclude nodes with low one from their finger tables,
them based on the hash of the concatenation of the ere.g. nodes with identity trust below 0.1 cannot join the
tity's ID (e.g IP) and the action description. When a ring.

FaceTrust nodé encounters a specific entity, it queries  Chord’s inherently constraint routing table and secure
the DHT for all the behavioral reports that involve the node ID assignment ensures secure routing table main-
entity and the action. Once it locates the node that storegnance [18]. This means that each constrained rout-
those behavioral reports it asks the node for those reporigg table (and neighbor set) has an average fraction of
that originate from nodes i¥;. only f random entries that point to nodes controlled by

On the other hand a node needs to retrieve all the diredhe attacker, wherg is the fraction of compromised
trust updates involving all the nodes in its view. Thus it nodes. To further counter attacks on DHT routing we
is reasonable to index the updates by the node that issuesnploy a form of redundant routing [18]. We use multi-
it and store them at the issuing node. A nedeedsto ple DHT map functions (e.g. multiple Chord rings using
explicitly query for the existence of an update involving distinct hash function seeds). A node stores behavioral
all node pairs in its view. Thus every time interva] a  reports that correspond to its ID under all map functions.
nodes directly requests from each nodes V; to reply It also maintains a distinct forwarding(finger) table for
with its current non-zero direct trust valués, towards each map function. This technique defeats behavioral
other nodes in the network. If the difference between theeport suppression attacks (Section 2.4) through redun-
current direct trust metrié;, and the lastl;, i retrieved  dancy. The attacker is unlikely to control all the nodes
from j is greater tham, j includes this update in hisreply that store the behavioral reports or at least one node in
to i's request for direct trust updates. The constaist  the forwarding path for all rings.



A node: can retrieve the random subset of nodes inwe demonstrate the significance of FaceTrust admins ap-
its view V; either from the OSN provider which may act propriately setting the social trust towards their acquain
as a tracker of online FaceTrust nodes, or by exchangintances for rapid convergence of the system to correct trust
contact lists with other nodes. values for reporters and entities.

3.6 FaceTrust Operation Example 4.1 Sybil-Resistance Evaluation

Figure 2 depicts an example of the operation of a smalive experimentally evaluate our identity trust metric. We
FaceTrust network. The network includes a node taskedrawled Facebook [2] to gain an initial insight on how
with checking incoming packets for malicious code, effective SybilLimits is in detecting Sybil attacks in so-
FaceTrust node 3. That node has no inherent packetial networks that are likely to resemble the network of
classification functionality, thus it relies on the other FaceTrustadmins. Unlike other online social networking
two nodes, 1 and 2, for early warning about malicioussites, Facebook may more closely resemble the network
traffic coming his way. Node 1 is an EarlyBird [45] of trust between FaceTrust admins: users do not tend to
network-layer worm detector, which in this example is establish an excessive number of friend relationships and
able to identify and generate the fingerprist)(of ob-  identities are stronger: a) initially it was open only to
served Slammer worm packets and report that this fingereollege and high school students with verifiable emails;
print is worm ¢wm) with confidence:; (sl,wm) = 50%.  and b) its EULA states clearly that they consider creating
Node 2 is a Vigilante [19] end-to-end worm detector, fake identities as violation of their terms of use.
which is able to run the malicious code within a sandbox OQur crawled Facebook graph consists of more than
and analyze it. Thereby, node 2 reports with confidence&1 million nodes, and we scaled it down tola0K -
c1(sl,is wm) = 100% confidence that the fingerprint of node single connected component graph using the “forest
the slammer packet is a worm. fire” [29] sampling technique. The average hop count of
Node 3 maintains the depicted reporter trust graph, dethis graph is 6.11 and the diameter of the graph is 19.
rived from his5-node view. This view includes nodes 1 The number of total undirected edges is 930680 and the
and 2, which send the depicted behavioral reports. It alsaverage degree of node is 18. We assume that the current
includes nodes 4 and 5, which do not send any reports ifFacebook graph does not include a substantial number of
this example. The weighted directed edges in the graplsybils, therefore we consider those 100K nodes to repre-
correspond to the direct trust between the peers in nodgent the honest region of the social graph.
3's view. From the reporter trust graph and Equation 2,
the maximum trust path between nodes 3 and 1 traversef1 1
nodes 5 and 1 yieldingts; = 0.4. The maximum trust
path between 3 and 2 traverses nodes 5, 4 and 2 and
yields reporter trustts, =~ 0.65. The identity trust of 0.08

Identity Trust Evaluation

nodes 1 and 2 has been computed by the OSN provider 0.07 |
to beid; = 0.9 andids = 0.8, respectively. We can now 3 o6t
use Equation 3 to compute the trdsttTrust(sl, wm) Z 005!
that the IDS beside node 1 places on FaceTrust to cor- S ooal
rectly identify the slammer packet as worm: :i 003 |
S o
c1(sl, wm)rtsridy + ca(sl, wm)rtsaids 2 ooz
. . =0.82 0.01 |
rtz1idy + rtzsids
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4 Evaluation # of nodes in Sybil cluster

. . . . Figure 3:Average identity trust of all Sybil nodes as a function of the
In this section we evaluate FaceTrust's ability to mitigaténumber of nodes in the Sybil cluster with one attack edgeofirast,
unwanted traffic under varying threat scenarios. Firstthe average identity trust of honest nodes nodes @s89.
we evaluate our identity trust mechanism in terms of its
ability to mitigate Sybil attacks and its computational We now evaluate the effectiveness of FaceTrust's
cost. Second, we simulate the operation of a FaceTrussybilLimit-like technique in assigning low identity trust
P2P network that aims at proactively identifying spamvalues to Sybil nodes. In our evaluation, Sybil attack-
sources. Third we proceed with simulating the opera-ers form a single well-connected cluster. This cluster has
tion of a FaceTrust P2P network charged with the taska random graph topology under which Sybil nodes have
of identifying a containing the Slammer worm. Last average degrekl. The Sybil cluster is connected to the



Creating one permutation table 0.815699
Random Routing from an honest suspec0.049568

g Random Routing from a Sybil suspect|| 0.027517
z Random Routing fronh verifiers 5.199869
g Verification for an honest suspect 0.093293
g Verification for a Sybil suspect 0.237826
<

Table 1:Times (sec) for computing the identity trust of a suspect in
a 100K node social network with the SybilLimit-like techoiy

0 E;O 1 60 1 50 260 250 360
# of attack edges from the 1000-node Sybil cluster ) ) )
cache and 2GB RAM machine, running Linux 2.6.25-2-
Figure 4: Average identity trust score of all Sybil nodes as a func- 68. The identity trust computation consists of three parts,
tion of the number of attack edges in the Sybil cluster witbA 8ybil all of which are performed off-line: a) the cost of creat-
nodes.In contrast, the average identity trust of honesesiomdes is ing the routing tables at each node; b) the cost of drawing
~ 089 random routes from the suspect and the verifiers (random
routing); ¢) the cost of determining intersections between

honest region througdittack edgebetween a Sybil node the verifiers’ and the suspects’ tails(verification).
and an honest node. We vary the number of nodes in the The cost of creating one permutation table increases
Sybil cluster from 100 up to 1500, as well as the numbetinearly with the number of nodes, because the system
of attack edges from 1 up to 300. We set the lengthf ~ needs to explore all nodes generating permutation tables.
random routes equal t7, the number of routing tables The number of permutation tables for the SybilLimit-
r at each node equa®$00 and the number of verifiers like technique is- which should be9(\/m), wherem is
[ equal t0100. With these settings, the average identity the number of edges in the social graph. Consequently,
trust of 1000 randomly chosen honest nodds89 with  the total cost of creating all permutation tables for the
0.10 standard deviation. SybilLimit-like technique is©(n * /m). Because of

In Figure 3, we observe that as the number of nodeshe linear increase in computation time, we need to pre-
in a Sybil cluster increases, the average identity trust oEompute all required permutation tables for the target so-
Sybil nodes decreases and stabilizes at ar@utid The  cial network. If we assume that the size of the target so-
reason is that as the Sybil cluster increases in size, theial network is 40 million with average node degtxke
probability that random routes from Sybil nodes crossr has to be approximately 55KB and 8.8MB storage per
attack edges decreases. Figure 4 shows that when tmode is required. Generally, the social network updates
number of attack edges increases, the average identiglowly, thus this type of precomputation is practical.
trust of Sybil nodes in the cluster increases logarithmi- The number of traversed edges during random routing
cally. The reason is that the probability that randomfrom a node i€ (w = r) and its cost i (log(n) * /m),
routes from Sybil nodes and honest nodes cross attackheren is the number of nodes in the social graph. In
edges increases. terms of scalability, as the size of social network in-

The above results demonstrate that the SybilLimit-creases ta? * n from n, this cost increase®(log(R =
like technique assigns much lower identity trust to Sybiln)/log(n) * v/R) times. With a 40-million-node so-
nodes than to honest nodes, when the number of attaakial network, the random routing from an honest sus-
edges is not too high. The low identity trust for Sybil pect takes approximately 1.4 seconds. We can also pre-
nodes renders substantially less effective Sybil attatks i compute the random routing and stéretails, » for a
which the misbehaving nodes are not well-connected tsuspect and anotherfor a verifier. The precomputation
the social graph. of random routing for a 40-million-node social network
needs 440KB storage per node.

The verification compares tails of a suspect withr
tails of [ verifiers and its cost in our implementation is
The identity trust of nodes is computed centrally by the®(l x log(y/m) * \/m). Similar to random routing, the
OSN provider, and it is critical for the scalability of cost of the verification increas€glog(r*+v/R) /log(r) *
the system that the cost of this computation is not pro-/R) times, when the size of the social network increases
hibitively expensive. Table 1 shows the required compu-R times. With a 40-million-node social network the cost
tation time to derive the identity trust for each node in of the verification for an honest node and a Sybil node
our 100K -node sample of the Facebook social network.would be approximately 2.6 seconds and 6.6 seconds, re-
We profile the identity trust computation implemented spectively. In the case of an honest node, there are many
in C++ on a Intel Pentium D, 3.40GHz CPU, 2048KB possible intersections and a verifier can find one of them

4.1.2 Cost of Identity Trust Computation



relatively promptly. But a Sybil node has very few inter- 4.2.1 Spamming Bots Simulation
sections and the system typically exhausts all tails with-
out finding any.

Since the computation of identity trust is performed
off-line and consists of simple computing jobs, its cost
can be greatly reduced by standard parallel computing
techniques. From the above, we conclude that OSN
providers that have the computational and hosting ca-
pability to host million of users are also capable of ef-
ficiently performing this computation using their highly
scalable infrastructure.
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4.2 Reporter Trust Evaluation

W luate F Trust's effecti . . Figure 5: The percentage of spam connections that are detected in
€ now evaluate Face rusts eflectiveness in managing,q’apsence of misbehaving FaceTrust nodes as a functjdf.o€on-

the trustworthiness of reporters and their behavioral renections for which a node 5% or 75% confident that are spam are
ports. considered detected.

We use the SimPy 1.9.1 [38] simulation package to
simulate FaceTrust's operation under spam email and
worm attack scenarios. We simulate all the protocol op-
erations described in Section 3 as well as an iterative
Chord DHT with 3 rings for redundancy. We do not sim-
ulate any physical, network or transport layer events (e.g.
congestion and packet loss). We repeat each simulation
3 times and we average results over the repetitions.

Nodes verify each other’s behavioral reports and up-
date their direct trust using the exponential moving av-
erage (Equguon 1). We compute the sqmlan'gy between 200 400 600 800 1000
reports in this evaluation as follows. Nodeeceives the View Size (number of nodes)

k" behavioral report from nodg that involves an en-
tity action pair(e, a) that both nodes have observed and Figure 6:The percentage of spam connections that are detected in the
to which node and;j have assigned confidencge, a) presence of misbehaving FaceTrust nodes as a functio¥ jofCon-

.j ] 9 AT nections for which a node 0% or 75% confident that are spam are
andc.?-(e, a) respectively. Node computes the similarity  onsidered detected.
vf; with node as follows:
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With this evaluation, we demonstrate FaceTrust’s abil-
ity to suppress one of the most prevalent types of Internet
unwanted traffic: spam email. We simulate the behavior
of a spamming botnet as it spam80K nodes (email

E.g. if nodei has sent a behavioral report concern-servers) that belong in a FaceTrust network. The goal of
ing a packet signature being a worm wiih% confi-  the simulated FaceTrust network is to promptly identify
dence and nodghas sent a behavioral report concerningspamming IPs and reject connections from therak
the same signature being a worm with% confidence, nodes in the FaceTrust network have the ability to char-
v;; = 50/60. acterize spam upon receiving it, e.g. by subscribing to

We evaluate our technique for varying view siz&3. a commercial email reputation service such as TrendMi-
The view of a node is a subset of the 100K-node samero [8]. We refer to thesé0K nodes asonest nodes
pled Facebook network described in Section 4.1. A nodé&Ve refer to the resi0 K nodes asegular nodesRegular
sets its direct trust towards nodes with which it is con-nodes cannot detect spam and cannot verify the behav-
nected in the sampled Facebook network equal to a rarieral reports of other nodes. They rely on honest nodes
dom value in[0.0, 1.0]. In addition, the size of the pre- to warn them about spamming bots.
trusted setN| (Section 3.3) is set equal #9 and the so- We draw the simulated spamming botnet behavior par-
cial trust assigned to the pre-trusted nodes is equabto  tially from [41] and [54]. 1000 spamming bots send
The view of a node consists of its social acquaintancesyniformly to all IP addresses over the coursel@b0
the pre-trusted set and a random subset of the samplestc. All spamming bots start to send emails at ran-
network. dom instances within the firdt) minutes of the simu-

r _ min(ci(e,a), cj(e, a))
Vi = maz(ci(e, a), ¢j(e, a)) @




1200 ; — ; ; ; bots propagates through the network depends on the size
of the view: the more nodes a nodéas in its view,

2 1000 o the larger is the probability that a node that has detected

g 800 | i w ] and reported a spam bot earlier is includisdview. On

g e0| average foV| = 1K, at the end of the simulation a

§ a0 | . | FaceTrust node hds31 trust towards honest nodes.

£ Y/t o We also observe that for small-sized views, ¢1g. =

@ 200, >75% confident is spam_ - ] 100, the system is ineffective in rejecting spam because
ol ‘ ‘ ‘ ‘ ‘ the probability that another node in the view has encoun-

0 200 400 600 800 1000 1200 tered the same threat (spamming bot) and is able to offer

tims (sec) an early warning is substantially reduced. This obser-

Figure 7:The number of spam connections per second that are charyation motivates our deSign choice not to limit a node’s
acterized as such (true positives) as a function of imehdrpresence ~ View to comprise only its social acquaintances.
of misbehaving FaceTrust npdes. We glso depict the totabeumf In Figure 6, spamming bots are also misbehaving
il fﬁ;”;cet'ggzmifg”Cicrf's(i’ggrfe‘g g’;’::t:dhom% or 75% con- FaceTrust nodes, which claitn0 direct trust for mis-
behaving nodes in their view. Misbehaving FaceTrust
nodes discover honest nodes for which to report nega-
lation, since spam campaigns are found to be clusteretive direct trust by receiving their behavioral reports on
in time [42]. Spamming bots establish 3 connections peknown spammers. In addition, misbehaving FaceTrust
second [54]. The parameterof Equation 1 is set equal nodes send behavioral reports for all the spam sources,
to 0.4. The parameter (Section 3.3) is set equal @2.  claiming 0% confidence that they are spammers. Fur-
The size of the pre-trusted set is equal2th Lastly, thermore, misbehaving FaceTrust nodes refuse to store
FaceTrust nodes retrieve direct trust updates regardingegative behavioral reports regarding spamming hosts or
nodes in their view everp) = 20 secs. (Section 3.5).  forward DHT queries that involve them.

750 of the spamming bots connect to randomly se- ThelK misbehaving nodes correspond to misconfig-
lected nodes forl20 sec. We call these spammers ured honest nodes or nodes that were compromised after
ephemeral.The rest of the bots persist for until the end ofheir users joined the social network and established trust
the simulation, and we refer to them as persistent. Spantelationships. Thus, they are well-connected in the so-
mers never attempt to connect to an already visited nodeial network, being trusted by their pre-existing acquain-

A node that receives an SMTP connection issues &ances. They do not correspond to a botnet that joins the
GetTrust () call, which entails the retrieval of rele- overlay and attempts to manipulate it, as such bots would
vant behavioral reports submitted by nodes in its view,oe unable to establish friend links, resulting in them hav-
and computing the trustworthiness of those nodes (Sedng very low identity trust. Thus, their influence would
tions 3.3, 3.4). Honest nodes update the direct trust obe substantially diminished (Section 4.1.1).
their peers as soon as they verify their behavioral reports In this simulation, a misbehaving node is able to iden-
(Equation 1). They issuekeport () call to submita be- tify all honest nodes in its view, the number of which is
havioral report about a spamming host withd% confi-  on average- 100 for |V| = 1K. ForV = 1K, a node
dence as soon as they receive an SMTP connection frometrieves on average 3 behavioral reports that originate
that host. Nodes use the maximum trust path to deterfrom honest nodes in its view ard9 behavioral reports
mine their transitive trust with other nodes in their view originating from misbehaving nodes. At the end the sim-
(Equation 2). ulation, a FaceTrust node has1 average trust towards

Figure 5 reports the percentage of spam connectionBonest nodes an@l04 average trust towards misbehav-
that are perceived as such by the regular FaceTrust nodézg ones.
throughout the duration of the spam campaign. Itis pre- We observe that the effectiveness of the system is sub-
sented as a function of the FaceTrust nodes’ view®ize stantially reduced in the presence of misbehaving nodes.
A spamming connection is considered detected if the regHowever, forl = 1K itis still able to block54% of the
ular node that receives it considers the requesting node gpam when nodes reject connections that theyraje
spam bot with greater thai® or 75% confidence. confident to be spamming.

In our simulation, on average a node is spammed by In Figure 7 we report the number of spam connec-
approximatelyl 2 distinct spam hosts. We observe thattions per second that are characterized as such by the
for view size|V'| = 1k, the network is able to rejei % regular nodes (true positives), throughout the spam cam-
of the spam connections if nodes reject connections fronpaign. This is the same experiment as the one in Figure 6.
nodes that are perceived as spam bots ®itht confi- Spamming hosts also act as misbehaving FaceTrust
dence. The speed with which confidence regarding spamodes reporting.0 trust for misbehaving nodes ané
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Figure 8: The rate with which spam connections are detected as d-igure 9: The number of nodes that as8% or 75% confident of
function for appropriate and inappropriate social trustiea. Connec-  slammer packets being a worm upon encountering them. Wepliso
tions for which a node is 75% confident that are spam are ceresid  the number of nodes that are infected as a function of timaenab-
detected by that node. sence of a containment mechanism.

confidence that spamming nodes are spammers. At eadfust towards misbehaving ones. Had regular FaceTrust
instance, the rate is derived as the number of detectedodes not leverage social trust, they would be discon-
connections over the lagh seconds. We observe that nected from the rest of their trust graph and defive
as time progresses and the trust of the spam bots prop#ust towards their peers. Consequently, they would be
gates in the network, the rate with which spam bots sucunable to consider the behavioral reports of their peers
cessfully establish connections decreases. In additgon, éand reject spam connections.
time progresses the trustworthiness of honest reporters This result motivates our design choice to tap into the
increases resulting in nodes trusting their reports fastesocial trust between acquainted FaceTrust admins. So-
resulting in more effectively blocking of spam connec- cial trust is important because it allows new nodes to
tions. Furthermore as time progresses, the reputation dbrm a sufficiently connected reporter trust graph, which
dishonest FaceTrust nodes decreases resulting in less dlfiey can use to derive appropriate transitive trust values
fective manipulation of the trust, and enabling more ef-towards their peers. These trust values can be derived
fective spam detection. Persistent bots are the easiest without prior report verifications. Social trust also con-
block as they get blacklisted early in their lifetime. Con- tributes in trust values converging to correct ones faster
sequently, after the first 600 sec, as the ephemeral bofgiven that the social trust values are appropriate), even
die out, the effectiveness of the system in blocking spanin the case report verifications are infrequent.
is drastically improved.

Thg above results qlemor?st_rgte tha’_[ EaceTrugt offers25 3 |nternet Worm Simulation
plausible spam blocking primitive. If it is used in con-
junction with existing email classification mechanisms it To further demonstrate FaceTrust’s utility, we now eval-
has the potential for very wide threat coverage. uate our system’s ability to contain epidemically self-
replicating malicious code. We simulate the behavior
of the Slammer worm. We derive the Slammer epi-
demic parameters from [36], with the distribution of scan
With this evaluation, we demonstrate the importance ofrate among infected hosts being normal with mean 4000
using the social network of FaceTrust admins to initial- scans/sec]V (4000, 20002). The parametety of Equa-
ize the direct trust between nodes to an appropriate valugion 1 is set equal t6.3, and the parametei(Section 3.3)
The settings for this simulation are the same as for Figis set equal td.1. Lastly, the parametdp (Section 3.5)
ure 7, except that all the direct trust values between sois set equal t3 sec.

4.2.2 Significance of Social Trust

cially acquainted nodes are set equaltb, and the di- Out of the 100K total simulated FaceTrust nodes,
rect trust is set t0.9 for only 5 instead of20 pre-trusted 10K nodes are able to detect worms with0% certainty
nodes. and not get infected (e.g. Vigilante [19] nodes). We re-

Figure 8 illustrates that appropriately initializing the fer to these 10K nodes d&®nest nodesWe refer to the
trust graph with proper social trust values yields morerest90K nodes asegular nodes Regular nodes rely on
effective blocking of spammers than not initializing the honest nodes to warn them about worm-carrying pack-
trust graph. On average when the social trust is not apets. The rest of the nodes cannot detect worms and do
propriately used, at the end of the simulation a FaceTrustot verify the behavioral reports of other nodes, there-
node has only.11 trust towards honest nodes and1 fore they do not generate behavioral reports and do not



send direct trust updates. Anothigk’ nodes are misbe- FaceTrust applies to a broad range of entities, ranging
having FaceTrust nodes. These misbehaving nodes claifrom data objects to end systems. second, FaceTrust
0% confidence that slammer packets are worms. Theyncorporates social trust to mitigate false reporting and
also claim1.0 direct trust for misbehaving nodes in their Sybil attacks; other systems typically rely on a central
view. In addition, misbehaving nodes refuse to store orcertification authority, e.g. [52].
forward DHT queries regarding behavioral reports that In EigenTrust [26] nodes converge to the same trust
would help regular nodes to contain the worm. Slammewalue because a node learns about all the interactions be-
randomly generates target IP addresses to scan, while thween peers in the system, while in FaceTrust nodes learn
IPs FaceTrust nodes are picked uniformly randomly inonly about the interactions involving nodes in their view.
the 32-bit IP space. FaceTrust aims at enabling nodes to have a reliable es-
FaceTrust nodes retrieve behavioral reports for theimate of the probability that a peer is trusted and not
Slammer packet when their IDS application callsin system-wide trust convergence. Therefore, FaceTrust
GetTrust(packet signature, ‘‘is worm’’). They is a more lightweight reputation management protocol,
submit behavioral reports as soon as their applicationvhich does not require multiple iterations. EigenTrust
classifies a packet as being the slammer worm. Theyeputation values are normalized so that the sum of the
update their direct trust as soon as the node verifies theeputation values for all hosts1s0. The rationale is that
behavioral reports of another node. no peer should be able to disproportionately affect the
Each node has &/ -node view of the FaceTrust net- reputation ranking of a peer by sending a highly skewed
work. Depending on the threshold of confidence for dereputation update. EigenTrust's normalized reputation
ciding whether a packet is worm, nodes that ar60%  values do not map to the probability that a host's report is
or > 75% confident that a packet is worm do not get in- valid, while FaceTrust trust values |, 1.0] do. Eigen-
fected. Nodes that are not as confident about the packatrust values can be used for ranking hosts, but cannot
being worm get infected upon being scanned and staibe used to derive the probability that a host's reports are
scanning themselves. The epidemic originates from arustworthy.
single infected host at the start of the simulation. Infécte  pageRank [15] leverages the link structure of the web
nodes do not act as misbehaving FaceTrust nodes.  to rank the popularity and significance of web search re-
Figure 9 shows the number of regular nodes that argults. The PageRank of a web page corresponds to the
> 50% or > 75% confident of slammer packets being probability that a web surfer will eventually visite this
a worm as time progresses. In addition, it shows thesite by randomly following links. It is similar in prin-
number of hosts that become infected in the absence @fiple to EigenTrust, with the main difference being that
a defense mechanism. Our results show that FaceTruglust in PageRank is derived by incoming links, while in
converges fast towards all honest FaceTrust nodes hagigenTrust by explicit trust assignments between nodes
ing greater thas0% confidence that the worm packet is derived by direct observations of each other’s behavior.
malicious. The rate of convergence is faster than the rate
of worm propagation. This result implies great potential

for containment of self-replicating malicious code. 5.2 Exploiting Social Networks to Derive
Trust
5 Related Work Several works exploit the trusted relations that form so-

. . , ) cial networks to reliably assess the trustworthiness of en-
We now discuss prior work pertinent to FaceTrust’s de’tities [22,24,33,40,43,44,60]. Unlike FaceTrust, they do

sign. not use tagged social links both to bootstrap trust values
between socially acquainted nodes and to defend against
5.1 Reputation Management Systems Sybil attacks.

FaceTrust is inspired by prior work on reputation and

trust management systems [14, 23, 32, 34]. Well-knowr5.3 Collaborative Unwanted Traffic Miti-

trust and reputation management systems include the rat- gation

ing scheme used by the eBay on-line auction site, object

reputation systems for P2P file sharing networks [26,52FaceTrust is a generic collaborative threat mitigation
or schemes to incent seeding in P2P content distribuframework that can be used to defend against a large va-
tion systems [12,39]. Some reputation systems clainriety of attacks against the Internet infrastructure. Vigi
resilience to false reports and collusions [16, 20], how-lante [19] and Sweeper [50] are also collaborative threat
ever the Sybil attack if successful enables an adversamnitigation platforms. However, they are purpose-built
to defeat these defenses. In contrast to these systenfer worm containment through malicious code detection



and distribution of antibodies. Vigilante employs dy- fering a rather large window of opportunity to attackers.
namic taint analysis within an isolated virtual machine This delay can be attributed to the fact that these services
sandbox. Sweeper uses lightweight monitoring tech-determine the reputation of an entity once the number
nigues and lightweight checkpointing to detect and re-of reports exceeds a predetermined threshold in order to
cover from attacks during normal execution. Vigilante avoid incorrect classifications. FaceTrust does not need
requires that a host is equipped with a sandbox in order téo incur this delay because it leverages the history of past
verify the antibody-carrying Self Certifying Alerts sent interactions to readily determine trust values.
by other Vigilante nodes. In Sweeper, it is assumed that Zang et al.’s Highly Predictive Blacklisting [57] com-
the consumers of antibodies produced by other nodes ipares blacklists submitted by distinct distributed cdmtri
the system fully trust the producers. Since FaceTrust emdtors. They rank blacklist reports based on similarity.
ploys reliable trust metrics, nodes in our system are abl@he intuition is that if two contributors have been at-
to determine the validity of alerts and antibodies withouttacked by the same attackers in the past they are more
having to verify them themselves. likely to be attacked by the same attackers in the future.
In [17] distributed monitors use heuristics to detect Thus, reports from a contributor that had similar experi-
worms and report there fingerprints using a DHT. Zouences in the past should weigh more.
et al. propse a system [61] in which distributed monitors Behavioral blacklisting [42] combines spamming ac-
report worm signatures to a centralized server. tivity across multiple spam target domains. It identi-
Prior work also includes proposals for collabora-fies spamming IP addresses based on the observation
tive spam filtering [1, 58, 59]. Unlike these systems,that spamming botnets tend to send large amounts of
FaceTrust explicitly addresses the issue of trustworthi€mails from many IP addresses, to relatively small num-
ness of the collaborating spam reporters through a disber of domains over a short period of time. The sys-
tributed reporter reputation management system. Kondem is able to capture this behavior and cluster offend-
et al. [28] consider non-compliant behavior, using Eigen-Ng IP addresses based on spam target domains and time
trust for reporter reputation. Nodes exchange emaiffames. FaceTrust can be used to assign trust values to
signatures filter email based on content Besides bein§mail sender behaviors based on spam content, sending
threat-specific, the aforementioned solutions only enabléequency, time patterns etc as reported in [42,54].
classifying the contents of emails and not the source of Ostra [35] leverages social networks to tackle un-
spam. This requires email servers to waste resources dﬁantEd communication and is inherently resilient to the
email reception and filtering. FaceTrust can assign trusBybil attack. It bounds the total amount of unwanted
metrics to sources, thereby rejecting unwanted emaifommunication a user can produce based on the num-
traffic on the outset. ber of trust relationships the user has and the amount of
TrustedSource [6] employs a centralized repository to°@Mmmunication that has been flagged as wanted by its
which more than 7000 globally distributed submit behav-"€C€IvVers. In our setting, Ostra could be used to regu-
ior reports. Applications query the repository which re- late the amount of behavioral reports that each FaceTrust

turns the reputation for the specified IPs,domain name80de can send. However, Ostra assumes that all com-
or URLs. The reputation can be one of the five trustedMunication is verifiable and can be flagged as wanted.
neutral, unverified, suspicious, and untrusted. A sim--{OWeVer, this is not always the case in FaceTrust where
ilar infrastructure is used by the SpamHaus [7] anghodes do not alyvays have _the_z_ablllty to verify behavioral
Trend Micro [8], which rely on worldwide sensors to _reports. Thus, instead of limiting the number of behav-
report the IP address of spam senders. Based on tHeral reportsanqde can produce, we chose to assigns lev-
sensor’s feedback SpamHaus publishes blacklists of IP8!S Of trustworthiness to each report that depend both on
known to send spam. Unlike FaceTrust, the reputatioﬁhe node’s reporting history and the social relationships
for IPs/domains/URLS or the blacklists depend only on©f the node’s administrators.

the reported values of the sensors/honeypots and not on

the trustworthiness of the sensors themselves. ThesBybil Attack Defenses The most common strategy
sensors are deployed by TrustedSource, SpamHaus aagdainst Sybil attacks is perhaps relying on a central au-
TrendMicro or are assumed to be trusted. We envisiorthority that establishes a Sybil-free identity domain by
FaceTrust to consist of a much larger number of senbinding each entity to a single cryptographic identifier
sors/reporters as it is going to be a P2P system installe(b.g. public key certificate). Douceur [21] states that
by bot system administrators and casual Internet userthis approach is the only one fully capable of preventing
within large numbers of distinct trust domains. In ad- Sybil attacks. The challenges of this approach include
dition, centralized reputation services incur a delay bethe cost of deployment, privacy and anonymity issues,
tween the first reception of report of misbehavior and thecryptographic identifier revocation etc. In addition, this
time the reputation of the entity is publicly available, of- approach relies on the fact that the trusted authority is



fully capable to distinguish unique identities, whichmay 6 Conclusion
not always be true.

Another common defense against Sybils is resourcdVe have presented FaceTrust, a scalable peer-to-peer
testing of computing or storage capability. The under-SyStem for the rapid propagation of reports concerning
lying assumption is that a Sybil attacker does not pOS_the behavior of Internet entities (hosts, email signatures
sess enough resources to perform the additional tests inacketfingerprints etc). FaceTrust nodes use each other’s
posed on each Sybil node. Some drawbacks with refeports and the social network of their human users to
source testing are listed in [21], such as the fact thaProvide to applications a quantitative measure of an en-
attackers subvert this defense by tricking humans intdity’s trustworthiness: the likelihood that an entity is as

solving CAPTCHAS [10] posted on their website or pre- sociated with a specified malicious action. Applications
sented by malware on infected machines. can in turn use this measure to make informed decisions

on how to handle traffic associated with the entity in
FaceTrust's design is inspired by SybilGuard and W I ! w e

SO . - question.
SybilLimit [55, 56]. T_h_ese systems defend against Sybil Our simulation-based evaluation demonstrated our de-
attacks [21] by exploiting the fact that OSNs can be used ign’s potential for the suppression of two common types
for resource testing, where the test in question is a Sybi?

attackers ability to create and sustain acquaintances of unwanted traffic. FaceTrust nodes were able to iden-
y q " tify 71% of spam connections with greater tHei¥ con-

SybilGuard and SybilLimit are decentralized proto- fidence. In addition, FaceTrust nodes became aware of a
cols that operate over a distributed social network. Given/vorm fingerprint at a faster rate than the worm propa-

a request for connection, the protocol decides whethegated.

the request is accepted or rejected. SybilLimit restricts
a Sybil attacker that managed to socially associate wit
O(4/(n)/log(n) nodes in the social network to perform-
ing collaborative tasks with oni9(1/(n) legitimate net- [g
work nodes, regardless of how many Sybils it deploys. [3]
In SybilGuard/Limit, a verifier either accepts a suspect [g%
as a node with which to establish a social edge with or [g]
not. However, in real social network large clusters of
legitimate social network nodes are frequently not well- [g]
connected with other clusters, meaning that nodes from9
one cluster may reject collaboration requests from legit{1io]
imate nodes in other clusters. FaceTrust Sybil defense§l
are designed for centrally maintained online social net-
works (e.g. Facebook). They are conceptually simplef!?!
because they leverage information available to the OSN
provider (i.e. the complete social graph topology), and™®!
intend to not completely ignore input from not well- [14
connected nodes, but instead assign low weight (identit¥151
trust) to it.

A SybilGuard-like technique is used by Leshniewski el
et al. [30] to limit the Sybil attack in one-hop DHTSs. (171

]

(18]

[19]
5.4 Social-network-based Applications

(20]
Instant messaging networks such as Google Talk, Ya-
hoo IM, and MSN are prime examples of Internet ap-[21]
plications that form online social networks. The re- 22
search community and the industry has also creategs)
social-networking-based applications for file-sharind an [24]
backup [9,31,49]. FaceTrust extends the utility of social
networks to providing a trust layer for Internet entities
aimed at mitigating unwanted traffic.

(25]
" [26]
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